Package io.jenetics.prog.regression
Class Regression<T>
- java.lang.Object
-
- io.jenetics.prog.regression.Regression<T>
-
- Type Parameters:
T- the operation type
- All Implemented Interfaces:
Problem<Tree<Op<T>,?>,ProgramGene<T>,Double>
public final class Regression<T> extends Object implements Problem<Tree<Op<T>,?>,ProgramGene<T>,Double>
This class implements a symbolic regression problem. The example below shows a typical usage of theRegressionclass.public class SymbolicRegression { private static final ISeq<Op<Double>> OPERATIONS = ISeq.of(MathOp.ADD, MathOp.SUB, MathOp.MUL); private static final ISeq<Op<Double>> TERMINALS = ISeq.of( Var.of("x", 0), EphemeralConst.of(() -> (double)RandomRegistry.random().nextInt(10)) ); private static final Regression<Double> REGRESSION = Regression.of( Regression.codecOf(OPERATIONS, TERMINALS, 5), Error.of(LossFunction::mse), Sample.ofDouble(-1.0, -8.0000), // ... Sample.ofDouble(0.9, 1.3860), Sample.ofDouble(1.0, 2.0000) ); public static void main(final String[] args) { final Engine<ProgramGene<Double>, Double> engine = Engine .builder(REGRESSION) .minimizing() .alterers( new SingleNodeCrossover<>(0.1), new Mutator<>()) .build(); final EvolutionResult<ProgramGene<Double>, Double> result = engine.stream() .limit(Limits.byFitnessThreshold(0.01)) .collect(EvolutionResult.toBestEvolutionResult()); final ProgramGene<Double> program = result.bestPhenotype() .genotype() .gene(); final TreeNode<Op<Double>> tree = program.toTreeNode(); MathExpr.rewrite(tree); // Simplify result program. System.out.println("Generations: " + result.totalGenerations()); System.out.println("Function: " + new MathExpr(tree)); System.out.println("Error: " + REGRESSION.error(tree)); } }- Since:
- 5.0
- Version:
- 6.0
- Author:
- Franz Wilhelmstötter
- See Also:
SampleBuffer,Sampling
-
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description Codec<Tree<Op<T>,?>,ProgramGene<T>>codec()static <T> Codec<Tree<Op<T>,?>,ProgramGene<T>>codecOf(ISeq<Op<T>> operations, ISeq<Op<T>> terminals, int depth)Create a new codec, usable for symbolic regression problems, with the given parameters.static <T> Codec<Tree<Op<T>,?>,ProgramGene<T>>codecOf(ISeq<Op<T>> operations, ISeq<Op<T>> terminals, int depth, Predicate<? super ProgramChromosome<T>> validator)Create a new codec, usable for symbolic regression problems, with the given parameters.doubleerror(Tree<? extends Op<T>,?> program)Calculates the actual error for the givenprogram.Function<Tree<Op<T>,?>,Double>fitness()static <T> Regression<T>of(Codec<Tree<Op<T>,?>,ProgramGene<T>> codec, Error<T> error, Sample<T>... samples)Create a new regression problem instance with the given parameters.static <T> Regression<T>of(Codec<Tree<Op<T>,?>,ProgramGene<T>> codec, Error<T> error, Sampling<T> sampling)Create a new regression problem instance with the given parameters.static <T> Regression<T>of(Codec<Tree<Op<T>,?>,ProgramGene<T>> codec, Error<T> error, Iterable<? extends Sample<T>> samples)Create a new regression problem instance with the given parameters.
-
-
-
Method Detail
-
error
public double error(Tree<? extends Op<T>,?> program)
Calculates the actual error for the givenprogram.- Parameters:
program- the program to calculate the error value for- Returns:
- the overall error value of the program
-
of
public static <T> Regression<T> of(Codec<Tree<Op<T>,?>,ProgramGene<T>> codec, Error<T> error, Sampling<T> sampling)
Create a new regression problem instance with the given parameters.- Type Parameters:
T- the operation type- Parameters:
codec- the problem codec to useerror- the error functionsampling- the sampling function- Returns:
- a new regression problem instance
- Throws:
NullPointerException- if on of the arguments isnull- See Also:
codecOf(ISeq, ISeq, int),codecOf(ISeq, ISeq, int, Predicate)
-
of
public static <T> Regression<T> of(Codec<Tree<Op<T>,?>,ProgramGene<T>> codec, Error<T> error, Iterable<? extends Sample<T>> samples)
Create a new regression problem instance with the given parameters.- Type Parameters:
T- the operation type- Parameters:
codec- the problem codec to useerror- the error functionsamples- the sample points used for regression analysis- Returns:
- a new regression problem instance
- Throws:
IllegalArgumentException- if the givensamplesis emptyNullPointerException- if on of the arguments isnull- See Also:
codecOf(ISeq, ISeq, int),codecOf(ISeq, ISeq, int, Predicate)
-
of
@SafeVarargs public static <T> Regression<T> of(Codec<Tree<Op<T>,?>,ProgramGene<T>> codec, Error<T> error, Sample<T>... samples)
Create a new regression problem instance with the given parameters.- Type Parameters:
T- the operation type- Parameters:
codec- the problem codec to useerror- the error functionsamples- the sample points used for regression analysis- Returns:
- a new regression problem instance
- Throws:
IllegalArgumentException- if the givensamplesis emptyNullPointerException- if on of the arguments isnull- See Also:
codecOf(ISeq, ISeq, int),codecOf(ISeq, ISeq, int, Predicate)
-
codecOf
public static <T> Codec<Tree<Op<T>,?>,ProgramGene<T>> codecOf(ISeq<Op<T>> operations, ISeq<Op<T>> terminals, int depth, Predicate<? super ProgramChromosome<T>> validator)
Create a new codec, usable for symbolic regression problems, with the given parameters.- Type Parameters:
T- the operation type- Parameters:
operations- the operations used for the symbolic regressionterminals- the terminal operations of the program treedepth- the maximal tree depth (height) of newly created program treesvalidator- the chromosome validator. A typical validator would check the size of the tree and if the tree is too large, mark it at invalid. The validator may benull.- Returns:
- a new codec, usable for symbolic regression
- Throws:
IllegalArgumentException- if the treedepthis not in the valid range of[0, 30)NullPointerException- if theoperationsorterminalsarenull
-
codecOf
public static <T> Codec<Tree<Op<T>,?>,ProgramGene<T>> codecOf(ISeq<Op<T>> operations, ISeq<Op<T>> terminals, int depth)
Create a new codec, usable for symbolic regression problems, with the given parameters.- Type Parameters:
T- the operation type- Parameters:
operations- the operations used for the symbolic regressionterminals- the terminal operations of the program treedepth- the maximal tree depth (height) of newly created program trees- Returns:
- a new codec, usable for symbolic regression
- Throws:
IllegalArgumentException- if the treedepthis not in the valid range of[0, 30)NullPointerException- if theoperationsorterminalsarenull
-
-