001/*
002 * Java Genetic Algorithm Library (jenetics-7.1.0).
003 * Copyright (c) 2007-2022 Franz Wilhelmstötter
004 *
005 * Licensed under the Apache License, Version 2.0 (the "License");
006 * you may not use this file except in compliance with the License.
007 * You may obtain a copy of the License at
008 *
009 *      http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 *
017 * Author:
018 *    Franz Wilhelmstötter (franz.wilhelmstoetter@gmail.com)
019 */
020package io.jenetics;
021
022import static java.lang.String.format;
023
024import io.jenetics.internal.math.Subset;
025import io.jenetics.util.MSeq;
026import io.jenetics.util.RandomRegistry;
027
028/**
029 * The {@code PartiallyMatchedCrossover} (PMX) guarantees that all {@link Gene}s
030 * are found exactly once in each chromosome. No gene is duplicated by this
031 * crossover. The PMX can be applied usefully in the TSP or other permutation
032 * problem encodings. Permutation encoding is useful for all problems where the
033 * fitness only depends on the ordering of the genes within the chromosome. This
034 * is the case in many combinatorial optimization problems. Other crossover
035 * operators for combinatorial optimization are:
036 * <ul>
037 *     <li>order crossover</li>
038 *     <li>cycle crossover</li>
039 *     <li>edge recombination crossover</li>
040 *     <li>edge assembly crossover</li>
041 * </ul>
042 * <p>
043 * The PMX is similar to the two-point crossover. A crossing region is chosen
044 * by selecting two crossing points.
045 * <pre>
046 *     C1 = 012|345|6789
047 *     C2 = 987|654|3210
048 * </pre>
049 * After performing the crossover we normally got two invalid chromosomes.
050 * <pre>
051 *     C1 = 012|654|6789
052 *     C2 = 987|345|3210
053 * </pre>
054 * Chromosome {@code C1} contains the value 6  twice and misses the value
055 * 3. On  the other side chromosome {@code C2} contains the value 3 twice and
056 * misses the value 6. We can observe that this crossover is equivalent
057 * to the exchange of the values {@code 3 -> 6}, {@code 4 -> 5} and
058 * {@code 5 -> 4}. To repair the two
059 * chromosomes we have to apply this exchange outside the crossing region.
060 * <pre>
061 *     C1 = 012|654|3789
062 *     C2 = 987|345|6210
063 * </pre>
064 *
065 * <em>The {@code PartiallyMatchedCrossover} class requires chromosomes with the
066 * same length. An {@code IllegalArgumentException} is thrown at runtime if this
067 * requirement is not fulfilled.</em>
068 *
069 * @see PermutationChromosome
070 *
071 * @author <a href="mailto:franz.wilhelmstoetter@gmail.com">Franz Wilhelmstötter</a>
072 * @since 1.0
073 * @version 4.4
074 */
075public class PartiallyMatchedCrossover<T, C extends Comparable<? super C>>
076        extends Crossover<EnumGene<T>, C>
077{
078
079        public PartiallyMatchedCrossover(final double probability) {
080                super(probability);
081        }
082
083        @Override
084        protected int crossover(
085                final MSeq<EnumGene<T>> that,
086                final MSeq<EnumGene<T>> other
087        ) {
088                if (that.length() != other.length()) {
089                        throw new IllegalArgumentException(format(
090                                "Required chromosomes with same length: %s != %s",
091                                that.length(), other.length()
092                        ));
093                }
094
095                if (that.length() >= 2) {
096                        final var random = RandomRegistry.random();
097                        final int[] points = Subset.next(that.length(), 2, random);
098
099                        that.swap(points[0], points[1], other, points[0]);
100                        repair(that, other, points[0], points[1]);
101                        repair(other, that, points[0], points[1]);
102                }
103
104                return 1;
105        }
106
107        private static <T> void repair(
108                final MSeq<T> that, final MSeq<T> other,
109                final int begin, final int end
110        ) {
111                for (int i = 0; i < begin; ++i) {
112                        int index = that.indexOf(that.get(i), begin, end);
113                        while (index != -1) {
114                                that.set(i, other.get(index));
115                                index = that.indexOf(that.get(i), begin, end);
116                        }
117                }
118                for (int i = end, n = that.length(); i < n; ++i) {
119                        int index = that.indexOf(that.get(i), begin, end);
120                        while (index != -1) {
121                                that.set(i, other.get(index));
122                                index = that.indexOf(that.get(i), begin, end);
123                        }
124                }
125        }
126
127        @Override
128        public String toString() {
129                return format("%s[p=%f]", getClass().getSimpleName(), _probability);
130        }
131
132}