001/*
002 * Java Genetic Algorithm Library (jenetics-7.0.0).
003 * Copyright (c) 2007-2022 Franz Wilhelmstötter
004 *
005 * Licensed under the Apache License, Version 2.0 (the "License");
006 * you may not use this file except in compliance with the License.
007 * You may obtain a copy of the License at
008 *
009 *      http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 *
017 * Author:
018 *    Franz Wilhelmstötter (franz.wilhelmstoetter@gmail.com)
019 */
020package io.jenetics.prog.op;
021
022import static java.lang.String.format;
023import static io.jenetics.ext.internal.Names.isIdentifier;
024
025import java.io.Serial;
026import java.io.Serializable;
027import java.util.HashMap;
028import java.util.Map;
029import java.util.Objects;
030import java.util.SortedSet;
031import java.util.TreeSet;
032import java.util.regex.Matcher;
033import java.util.regex.Pattern;
034import java.util.stream.Collectors;
035
036import io.jenetics.ext.util.Tree;
037import io.jenetics.ext.util.TreeNode;
038
039/**
040 * Represents the program variables. The {@code Var} operation is a
041 * <em>terminal</em> operation, which just returns the value with the defined
042 * index of the input variable array. It is essentially an orthogonal projection
043 * of the <em>n</em>-dimensional input space to the <em>1</em>-dimensional
044 * result space.
045 *
046 * <pre>{@code
047 * final ISeq<? extends Op<Double>> operations = ISeq.of(...);
048 * final ISeq<? extends Op<Double>> terminals = ISeq.of(
049 *     Var.of("x", 0), Var.of("y", 1)
050 * );
051 * }</pre>
052 *
053 * The example above shows how to define the terminal operations for a GP, which
054 * tries to optimize a 2-dimensional function.
055 *
056 * <pre>{@code
057 * static double error(final ProgramChromosome<Double> program) {
058 *     final double x = ...;
059 *     final double y = ...;
060 *     final double result = program.eval(x, y);
061 *     ...
062 *     return ...;
063 * }
064 * }</pre>
065 *
066 * @implNote
067 * The {@code Var} object is comparable according it's name.
068 *
069 * @author <a href="mailto:franz.wilhelmstoetter@gmail.com">Franz Wilhelmstötter</a>
070 * @version 7.0
071 * @since 3.9
072 */
073public final class Var<T> implements Op<T>, Comparable<Var<T>>, Serializable {
074
075        @Serial
076        private static final long serialVersionUID = 1L;
077
078        private final String _name;
079        private final int _index;
080
081        /**
082         * Create a new variable with the given {@code name} and projection
083         * {@code index}.
084         *
085         * @param name the variable name. Used when printing the operation tree
086         *        (program)
087         * @param index the projection index
088         * @throws IllegalArgumentException if the given {@code name} is not a valid
089         *         Java identifier
090         * @throws IndexOutOfBoundsException if the projection {@code index} is
091         *         smaller than zero
092         * @throws NullPointerException if the given variable {@code name} is
093         *         {@code null}
094         */
095        private Var(final String name, final int index) {
096                if (!isIdentifier(name)) {
097                        throw new IllegalArgumentException(format(
098                                "'%s' is not a valid identifier.", name
099                        ));
100                }
101                if (index < 0) {
102                        throw new IndexOutOfBoundsException(
103                                "Index smaller than zero: " + index
104                        );
105                }
106
107                _name = name;
108                _index = index;
109        }
110
111        /**
112         * The projection index of the variable.
113         *
114         * @return the projection index of the variable
115         */
116        public int index() {
117                return _index;
118        }
119
120        @Override
121        public String name() {
122                return _name;
123        }
124
125        @Override
126        public int arity() {
127                return 0;
128        }
129
130        @Override
131        public T apply(final T[] variables) {
132                return variables[_index];
133        }
134
135        @Override
136        public int compareTo(final Var<T> o) {
137                return _name.compareTo(o._name);
138        }
139
140        @Override
141        public int hashCode() {
142                return Objects.hashCode(_name);
143        }
144
145        @Override
146        public boolean equals(final Object obj) {
147                return obj == this ||
148                        obj instanceof Var<?> other &&
149                        Objects.equals(other._name, _name);
150        }
151
152        @Override
153        public String toString() {
154                return _name;
155        }
156
157        /**
158         * Create a new variable with the given {@code name} and projection
159         * {@code index}.
160         *
161         * @see #parse(String)
162         *
163         * @param name the variable name. Used when printing the operation tree
164         *        (program)
165         * @param index the projection index
166         * @param <T> the variable type
167         * @return a new variable with the given {@code name} and projection
168         *         {@code index}
169         * @throws IllegalArgumentException if the given {@code name} is not a valid
170         *         Java identifier
171         * @throws IndexOutOfBoundsException if the projection {@code index} is
172         *         smaller than zero
173         * @throws NullPointerException if the given variable {@code name} is
174         *         {@code null}
175         */
176        public static <T> Var<T> of(final String name, final int index) {
177                return new Var<>(name, index);
178        }
179
180        /**
181         * Create a new variable with the given {@code name}. The projection index
182         * is set to zero. Always prefer to create new variables with
183         * {@link #of(String, int)}, especially when you define your terminal
184         * operation for your GP problem.
185         *
186         * @see #parse(String)
187         *
188         * @param name the variable name. Used when printing the operation tree
189         *        (program)
190         * @param <T> the variable type
191         * @return a new variable with the given {@code name} and projection index
192         *         zero
193         * @throws IllegalArgumentException if the given {@code name} is not a valid
194         *         Java identifier
195         * @throws NullPointerException if the given variable {@code name} is
196         *         {@code null}
197         */
198        public static <T> Var<T> of(final String name) {
199                return new Var<>(name, 0);
200        }
201
202        private static final Pattern VAR_INDEX = Pattern.compile("(.+)\\[\\s*(\\d+)\\s*]");
203
204        /**
205         * Parses the given variable string to its name and index. The expected
206         * format is <em>var_name</em>[<em>index</em>].
207         *
208         * <pre> {@code
209         * x[0]
210         * y[3]
211         * my_var[4]
212         * }</pre>
213         *
214         * If no variable <em>index</em> is encoded in the name, a variable with
215         * index 0 is created.
216         *
217         * @see #of(String, int)
218         *
219         * @param name the variable name + index
220         * @param <T> the operation type
221         * @return a new variable parsed from the input string
222         * @throws IllegalArgumentException if the given variable couldn't be parsed
223         *         and the given {@code name} is not a valid Java identifier
224         * @throws NullPointerException if the given variable {@code name} is
225         *         {@code null}
226         */
227        public static <T> Var<T> parse(final String name) {
228                final Matcher matcher = VAR_INDEX.matcher(name);
229
230                return matcher.matches()
231                        ? of(matcher.group(1), Integer.parseInt(matcher.group(2)))
232                        : of(name, 0);
233        }
234
235        /**
236         * Re-indexes the variables of the given operation {@code tree}. If the
237         * operation tree is created from it's string representation, the indices
238         * of the variables ({@link Var}), are all set to zero, since it needs the
239         * whole tree for setting the indices correctly. The mapping from the node
240         * string to the {@link Op} object, on the other hand, is a <em>local</em>
241         * operation. This method gives you the possibility to fix the indices of
242         * the variables. The indices of the variables are assigned according it's
243         * <em>natural</em> order.
244         *
245         * <pre>{@code
246         * final TreeNode<Op<Double>> tree = TreeNode.parse(
247         *     "add(mul(x,y),sub(y,x))",
248         *     MathOp::toMathOp
249         * );
250         *
251         * assert Program.eval(tree, 10.0, 5.0) == 100.0; // wrong result
252         * Var.reindex(tree);
253         * assert Program.eval(tree, 10.0, 5.0) == 45.0; // correct result
254         * }</pre>
255         * The example above shows a use-case of this method. If you parse a tree
256         * string and convert it to an operation tree, you have to re-index the
257         * variables first. If not, you will get the wrong result when evaluating
258         * the tree. After the re-indexing you will get the correct result of 45.0.
259         *
260         * @since 5.0
261         *
262         * @see MathOp#toMathOp(String)
263         * @see Program#eval(Tree, Object[])
264         *
265         * @param tree the tree where the variable indices needs to be fixed
266         * @param <V> the operation value type
267         */
268        public static <V> void reindex(final TreeNode<Op<V>> tree) {
269                final SortedSet<Var<V>> vars = tree.stream()
270                        .filter(node -> node.value() instanceof Var)
271                        .map(node -> (Var<V>)node.value())
272                        .collect(Collectors.toCollection(TreeSet::new));
273
274                int index = 0;
275                final Map<Var<V>, Integer> indexes = new HashMap<>();
276                for (Var<V> var : vars) {
277                        indexes.put(var, index++);
278                }
279
280                reindex(tree, indexes);
281        }
282
283        /**
284         * Re-indexes the variables of the given operation {@code tree}. If the
285         * operation tree is created from it's string representation, the indices
286         * of the variables ({@link Var}), are all set to zero, since it needs the
287         * whole tree for setting the indices correctly.
288         *
289         * <pre>{@code
290         * final TreeNode<Op<Double>> tree = TreeNode.parse(
291         *     "add(mul(x,y),sub(y,x))",
292         *     MathOp::toMathOp
293         * );
294         *
295         * assert Program.eval(tree, 10.0, 5.0) == 100.0; // wrong result
296         * final Map<Var<Double>, Integer> indexes = new HashMap<>();
297         * indexes.put(Var.of("x"), 0);
298         * indexes.put(Var.of("y"), 1);
299         * Var.reindex(tree, indexes);
300         * assert Program.eval(tree, 10.0, 5.0) == 45.0; // correct result
301         * }</pre>
302         * The example above shows a use-case of this method. If you parse a tree
303         * string and convert it to an operation tree, you have to re-index the
304         * variables first. If not, you will get the wrong result when evaluating
305         * the tree. After the re-indexing you will get the correct result of 45.0.
306         *
307         * @since 5.0
308         *
309         * @see MathOp#toMathOp(String)
310         * @see BoolOp#toBoolOp(String)
311         * @see Program#eval(Tree, Object[])
312         *
313         * @param tree the tree where the variable indices needs to be fixed
314         * @param indexes the variable to index mapping
315         * @param <V> the operation value type
316         */
317        public static <V> void reindex(
318                final TreeNode<Op<V>> tree,
319                final Map<Var<V>, Integer> indexes
320        ) {
321                for (TreeNode<Op<V>> node : tree) {
322                        final Op<V> op = node.value();
323                        if (op instanceof Var) {
324                                node.value(Var.of(op.name(), indexes.get(op)));
325                        }
326                }
327        }
328
329}