001/*
002 * Java Genetic Algorithm Library (jenetics-7.2.0).
003 * Copyright (c) 2007-2023 Franz Wilhelmstötter
004 *
005 * Licensed under the Apache License, Version 2.0 (the "License");
006 * you may not use this file except in compliance with the License.
007 * You may obtain a copy of the License at
008 *
009 *      http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 *
017 * Author:
018 *    Franz Wilhelmstötter (franz.wilhelmstoetter@gmail.com)
019 */
020package io.jenetics.ext.moea;
021
022import static java.lang.Math.min;
023import static java.util.Objects.requireNonNull;
024
025import java.util.ArrayList;
026import java.util.Comparator;
027import java.util.List;
028import java.util.function.ToIntFunction;
029
030import io.jenetics.Gene;
031import io.jenetics.Optimize;
032import io.jenetics.Phenotype;
033import io.jenetics.Selector;
034import io.jenetics.internal.math.Subset;
035import io.jenetics.util.ISeq;
036import io.jenetics.util.RandomRegistry;
037import io.jenetics.util.Seq;
038
039/**
040 * Unique fitness based tournament selection.
041 * <p>
042 * <em>The selection of unique fitnesses lifts the selection bias towards
043 * over-represented fitnesses by reducing multiple solutions sharing the same
044 * fitness to a single point in the objective space. It is therefore no longer
045 * required to assign a crowding distance of zero to individual of equal fitness
046 * as the selection operator correctly enforces diversity preservation by
047 * picking unique points in the objective space.</em>
048 * <p>
049 *  <b>Reference:</b><em>
050 *      Félix-Antoine Fortin and Marc Parizeau. 2013. Revisiting the NSGA-II
051 *      crowding-distance computation. In Proceedings of the 15th annual
052 *      conference on Genetic and evolutionary computation (GECCO '13),
053 *      Christian Blum (Ed.). ACM, New York, NY, USA, 623-630.
054 *      DOI=<a href="http://dx.doi.org/10.1145/2463372.2463456">
055 *          10.1145/2463372.2463456</a></em>
056 *
057 *
058 * @author <a href="mailto:franz.wilhelmstoetter@gmail.com">Franz Wilhelmstötter</a>
059 * @version 4.1
060 * @since 4.1
061 */
062public class UFTournamentSelector<
063        G extends Gene<?, G>,
064        C extends Comparable<? super C>
065>
066        implements Selector<G, C>
067{
068        private final Comparator<Phenotype<G, C>> _dominance;
069        private final ElementComparator<Phenotype<G, C>> _comparator;
070        private final ElementDistance<Phenotype<G, C>> _distance;
071        private final ToIntFunction<Phenotype<G, C>> _dimension;
072
073        /**
074         * Creates a new {@code UFTournamentSelector} with the functions needed for
075         * handling the multi-objective result type {@code C}. For the {@link Vec}
076         * classes, a selector is created like in the following example:
077         * <pre>{@code
078         * new UFTournamentSelector<>(
079         *     Vec<T>::dominance,
080         *     Vec<T>::compare,
081         *     Vec<T>::distance,
082         *     Vec<T>::length
083         * );
084         * }</pre>
085         *
086         * @see #ofVec()
087         *
088         * @param dominance the pareto dominance comparator
089         * @param comparator the vector element comparator
090         * @param distance the vector element distance
091         * @param dimension the dimensionality of vector type {@code C}
092         */
093        public UFTournamentSelector(
094                final Comparator<? super C> dominance,
095                final ElementComparator<? super C> comparator,
096                final ElementDistance<? super C> distance,
097                final ToIntFunction<? super C> dimension
098        ) {
099                requireNonNull(dominance);
100                requireNonNull(comparator);
101                requireNonNull(distance);
102                requireNonNull(dimension);
103
104                _dominance = (a, b) -> dominance.compare(a.fitness(), b.fitness());
105                _comparator = comparator.map(Phenotype::fitness);
106                _distance = distance.map(Phenotype::fitness);
107                _dimension = v -> dimension.applyAsInt(v.fitness());
108        }
109
110        @Override
111        public ISeq<Phenotype<G, C>> select(
112                final Seq<Phenotype<G, C>> population,
113                final int count,
114                final Optimize opt
115        ) {
116                final var random = RandomRegistry.random();
117
118                final CrowdedComparator<Phenotype<G, C>> cc = new CrowdedComparator<>(
119                        population,
120                        opt,
121                        _dominance,
122                        _comparator,
123                        _distance,
124                        _dimension
125                );
126
127                final List<Phenotype<G, C>> S = new ArrayList<>();
128                while (S.size() < count) {
129                        final int k = min(2*count - S.size(), population.size());
130                        final int[] G = Subset.next(random, population.size(), k);
131
132                        for (int j = 0; j < G.length - 1 && S.size() < count; j += 2) {
133                                final int cmp = cc.compare(G[j], G[j + 1]);
134                                final int p;
135                                if (cmp > 0) {
136                                        p = G[j];
137                                } else if (cmp < 0) {
138                                        p = G[j + 1];
139                                } else {
140                                        p = random.nextBoolean() ? G[j] : G[j + 1];
141                                }
142
143                                final C fitness = population.get(p).fitness();
144                                final List<Phenotype<G, C>> list = population.stream()
145                                        .filter(pt -> pt.fitness().equals(fitness))
146                                        .toList();
147
148                                S.add(list.get(random.nextInt(list.size())));
149                        }
150                }
151
152                return ISeq.of(S);
153        }
154
155        /**
156         * Return a new selector for the given result type {@code V}. This method is
157         * a shortcut for
158         * <pre>{@code
159         * new UFTournamentSelector<>(
160         *     Vec<T>::dominance,
161         *     Vec<T>::compare,
162         *     Vec<T>::distance,
163         *     Vec<T>::length
164         * );
165         * }</pre>
166         *
167         * @param <G> the gene type
168         * @param <T> the array type, e.g. {@code double[]}
169         * @param <V> the multi object result type vector
170         * @return a new selector for the given result type {@code V}
171         */
172        public static <G extends Gene<?, G>, T, V extends Vec<T>>
173        UFTournamentSelector<G, V> ofVec() {
174                return new UFTournamentSelector<>(
175                        Vec::dominance,
176                        Vec::compare,
177                        Vec::distance,
178                        Vec::length
179                );
180        }
181
182}