001/* 002 * Java Genetic Algorithm Library (jenetics-7.2.0). 003 * Copyright (c) 2007-2023 Franz Wilhelmstötter 004 * 005 * Licensed under the Apache License, Version 2.0 (the "License"); 006 * you may not use this file except in compliance with the License. 007 * You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 * 017 * Author: 018 * Franz Wilhelmstötter (franz.wilhelmstoetter@gmail.com) 019 */ 020package io.jenetics.ext.moea; 021 022import static java.util.Objects.requireNonNull; 023 024import java.util.ArrayList; 025import java.util.Comparator; 026import java.util.List; 027import java.util.function.ToIntFunction; 028import java.util.stream.IntStream; 029 030import io.jenetics.Gene; 031import io.jenetics.Optimize; 032import io.jenetics.Phenotype; 033import io.jenetics.Selector; 034import io.jenetics.util.ISeq; 035import io.jenetics.util.ProxySorter; 036import io.jenetics.util.Seq; 037 038/** 039 * This selector selects the first {@code count} elements of the population, 040 * which has been sorted by the <em>Crowded-Comparison Operator</em>, as 041 * described in <a href="http://ieeexplore.ieee.org/document/996017/"> 042 * A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II</a> 043 * <p> 044 * <b>Reference:</b><em> 045 * K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A fast and elitist 046 * multiobjective genetic algorithm: NSGA-II. Trans. Evol. Comp 6, 2 047 * (April 2002), 182-197. DOI=<a href="http://dx.doi.org/10.1109/4235.996017"> 048 * 10.1109/4235.996017</a></em> 049 * 050 * @author <a href="mailto:franz.wilhelmstoetter@gmail.com">Franz Wilhelmstötter</a> 051 * @version 4.1 052 * @since 4.1 053 */ 054public class NSGA2Selector< 055 G extends Gene<?, G>, 056 C extends Comparable<? super C> 057> 058 implements Selector<G, C> 059{ 060 061 private final Comparator<Phenotype<G, C>> _dominance; 062 private final ElementComparator<Phenotype<G, C>> _comparator; 063 private final ElementDistance<Phenotype<G, C>> _distance; 064 private final ToIntFunction<Phenotype<G, C>> _dimension; 065 066 /** 067 * Creates a new {@code NSGA2Selector} with the functions needed for 068 * handling the multi-objective result type {@code C}. For the {@link Vec} 069 * classes, a selector is created like in the following example: 070 * <pre>{@code 071 * new NSGA2Selector<>( 072 * Vec<T>::dominance, 073 * Vec<T>::compare, 074 * Vec<T>::distance, 075 * Vec<T>::length 076 * ); 077 * }</pre> 078 * 079 * @see #ofVec() 080 * 081 * @param dominance the pareto dominance comparator 082 * @param comparator the vector element comparator 083 * @param distance the vector element distance 084 * @param dimension the dimensionality of vector type {@code C} 085 */ 086 public NSGA2Selector( 087 final Comparator<? super C> dominance, 088 final ElementComparator<? super C> comparator, 089 final ElementDistance<? super C> distance, 090 final ToIntFunction<? super C> dimension 091 ) { 092 requireNonNull(dominance); 093 requireNonNull(comparator); 094 requireNonNull(distance); 095 requireNonNull(dimension); 096 097 _dominance = (a, b) -> dominance.compare(a.fitness(), b.fitness()); 098 _comparator = comparator.map(Phenotype::fitness); 099 _distance = distance.map(Phenotype::fitness); 100 _dimension = v -> dimension.applyAsInt(v.fitness()); 101 } 102 103 @Override 104 public ISeq<Phenotype<G, C>> select( 105 final Seq<Phenotype<G, C>> population, 106 final int count, 107 final Optimize opt 108 ) { 109 final CrowdedComparator<Phenotype<G, C>> cc = new CrowdedComparator<>( 110 population, 111 opt, 112 _dominance, 113 _comparator, 114 _distance, 115 _dimension 116 ); 117 118 final int[] idx = ProxySorter.sort( 119 init(new int[population.size()]), 120 population.size(), 121 (a, i, j) -> cc.compare(a[j], a[i]) 122 ); 123 124 final List<Phenotype<G, C>> result = new ArrayList<>(); 125 while (result.size() < count) { 126 IntStream.of(idx) 127 .limit(count - result.size()) 128 .mapToObj(population) 129 .forEach(result::add); 130 } 131 132 return ISeq.of(result); 133 } 134 135 private static int[] init(final int[] indexes) { 136 for (int i = 0; i < indexes.length; ++i) indexes[i] = i; 137 return indexes; 138 } 139 140 /** 141 * Return a new selector for the given result type {@code V}. This method is 142 * a shortcut for 143 * <pre>{@code 144 * new NSGA2Selector<>( 145 * Vec<T>::dominance, 146 * Vec<T>::compare, 147 * Vec<T>::distance, 148 * Vec<T>::length 149 * ); 150 * }</pre> 151 * 152 * @param <G> the gene type 153 * @param <T> the array type, e.g. {@code double[]} 154 * @param <V> the multi object result type vector 155 * @return a new selector for the given result type {@code V} 156 */ 157 public static <G extends Gene<?, G>, T, V extends Vec<T>> 158 NSGA2Selector<G, V> ofVec() { 159 return new NSGA2Selector<>( 160 Vec::dominance, 161 Vec::compare, 162 Vec::distance, 163 Vec::length 164 ); 165 } 166 167}