001/*
002 * Java Genetic Algorithm Library (jenetics-9.0.0).
003 * Copyright (c) 2007-2026 Franz Wilhelmstötter
004 *
005 * Licensed under the Apache License, Version 2.0 (the "License");
006 * you may not use this file except in compliance with the License.
007 * You may obtain a copy of the License at
008 *
009 *      http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 *
017 * Author:
018 *    Franz Wilhelmstötter (franz.wilhelmstoetter@gmail.com)
019 */
020package io.jenetics.engine;
021
022import static java.util.Objects.requireNonNull;
023
024import java.util.function.BiFunction;
025import java.util.function.Function;
026
027import io.jenetics.Gene;
028import io.jenetics.Genotype;
029import io.jenetics.util.Factory;
030import io.jenetics.util.ISeq;
031
032/**
033 * A problem {@code Codec} contains the information about how to encode a given
034 * argument type into a {@code Genotype}. It also lets convert the encoded
035 * {@code Genotype} back to the argument type. The engine creation and the
036 * implementation of the fitness function can be heavily simplified by using
037 * a {@code Codec} class. The example given in the {@link Engine} documentation
038 * can be simplified as follows:
039 * {@snippet lang="java":
040 * public class RealFunction {
041 *     // The conversion from the 'Genotype' to the argument type of the fitness
042 *     // function is performed by the given 'Codec'. You can concentrate on the
043 *     // implementation, because you are not bothered with the conversion code.
044 *     private static double eval(final double x) {
045 *         return cos(0.5 + sin(x)) * cos(x);
046 *     }
047 *
048 *     public static void main(final String[] args) {
049 *         final Engine<DoubleGene, Double> engine = Engine
050 *              // Create an Engine.Builder with the "pure" fitness function
051 *              // and the appropriate Codec.
052 *             .build(RealFunction::eval, Codecs.ofScalar(new DoubleRange(0, 2*PI)))
053 *             .build();
054 *         // ...
055 *     }
056 * }
057 * }
058 *
059 * The {@code Codec} needed for the above usage example, will look like this:
060 * {@snippet lang="java":
061 * final DoubleRange domain = new DoubleRange(0, 2*PI);
062 * final Codec<Double, DoubleGene> codec = Codec.of(
063 *     Genotype.of(DoubleChromosome.of(domain)),
064 *     gt -> gt.chromosome().gene().allele()
065 * );
066 * }
067 *
068 * Calling the {@link Codec#of(Factory, Function)} method is the usual way for
069 * creating new {@code Codec} instances.
070 *
071 * @see Codecs
072 * @see Engine
073 * @see Engine.Builder
074 *
075 * @param <T> the argument type of given problem
076 * @param <G> the {@code Gene} type used for encoding the argument type {@code T}
077 *
078 * @author <a href="mailto:franz.wilhelmstoetter@gmail.com">Franz Wilhelmstötter</a>
079 * @version 3.6
080 * @since 3.2
081 */
082public interface Codec<T, G extends Gene<?, G>> {
083
084        /**
085         * Return the genotype factory for creating genotypes with the right
086         * encoding for the given problem. The genotype created with this factory
087         * must work together with the {@link #decoder()} function, which transforms
088         * the genotype into an object of the problem domain.
089         * {@snippet lang="java":
090         * final Codec<SomeObject, DoubleGene> codec = null; // @replace substring='null' replacement="..."
091         * final Genotype<DoubleGene> gt = codec.encoding().newInstance();
092         * final SomeObject arg = codec.decoder().apply(gt);
093         * }
094         *
095         * @see #decoder()
096         *
097         * @return the genotype (factory) representation of the problem domain
098         */
099        Factory<Genotype<G>> encoding();
100
101        /**
102         * Return the <em>decoder</em> function which transforms the genotype back
103         * to the original problem domain representation.
104         *
105         * @see #encoding()
106         *
107         * @return genotype decoder
108         */
109        Function<Genotype<G>, T> decoder();
110
111        /**
112         * Converts the given {@link Genotype} to the target type {@link T}. This is
113         * a shortcut for
114         * {@snippet lang="java":
115         * final Codec<SomeObject, DoubleGene> codec = null; // @replace substring='null' replacement="..."
116         * final Genotype<DoubleGene> gt = codec.encoding().newInstance();
117         *
118         * final SomeObject arg = codec.decoder().apply(gt);
119         * }
120         *
121         * @since 3.6
122         *
123         * @param genotype the genotype to be converted
124         * @return the converted genotype
125         * @throws NullPointerException if the given {@code genotype} is {@code null}
126         */
127        default T decode(final Genotype<G> genotype) {
128                requireNonNull(genotype);
129                return decoder().apply(genotype);
130        }
131
132        /**
133         * Create a new {@code Codec} with the mapped result type. The following
134         * example creates a double codec whose values are not uniformly distributed
135         * between {@code [0..1)}. Instead, the values now follow an exponential
136         * function.
137         * {@snippet lang="java":
138         *  final Codec<Double, DoubleGene> c = Codecs.ofScalar(new DoubleRange(0, 1))
139         *      .map(Math::exp);
140         * }
141         *
142         * This method can also be used for creating non-trivial codes like split
143         * ranges, as shown in the following example, where only values between
144         * <em>[0, 2)</em> and <em>[8, 10)</em> are valid.
145         * <pre>{@code
146         *   +--+--+--+--+--+--+--+--+--+--+
147         *   |  |  |  |  |  |  |  |  |  |  |
148         *   0  1  2  3  4  5  6  7  8  9  10
149         *   |-----|xxxxxxxxxxxxxxxxx|-----|
150         *      ^  |llllllll|rrrrrrrr|  ^
151         *      |       |        |      |
152         *      +-------+        +------+
153         * }</pre>
154         *
155         * {@snippet lang="java":
156         * final Codec<Double, DoubleGene> codec = Codecs
157         *     .ofScalar(new DoubleRange(0, 10))
158         *     .map(v -> {
159         *             if (v >= 2 && v < 8) {
160         *                 return v < 5 ? ((v - 2)/3)*2 : ((8 - v)/3)*2 + 8;
161         *             }
162         *             return v;
163         *         });
164         * }
165         *
166         * @since 4.0
167         *
168         * @see InvertibleCodec#map(Function, Function)
169         *
170         * @param mapper the mapper function
171         * @param <B> the new argument type of the given problem
172         * @return a new {@code Codec} with the mapped result type
173         * @throws NullPointerException if the mapper is {@code null}.
174         */
175        default <B> Codec<B, G> map(final Function<? super T, ? extends B> mapper) {
176                requireNonNull(mapper);
177
178                return Codec.of(
179                        encoding(),
180                        mapper.compose(decoder())
181                );
182        }
183
184        /**
185         * Converts this codec into an <em>invertible</em> codec, by using the given
186         * {@code encoder} (inversion) function.
187         *
188         * @param encoder the (inverse) encoder function
189         * @return a new invertible codec
190         * @throws NullPointerException if the given {@code encoder} is {@code null}
191         */
192        default InvertibleCodec<T, G>
193        toInvertibleCodec(final Function<? super T, Genotype<G>> encoder) {
194                return InvertibleCodec.of(encoding(), decoder(), encoder);
195        }
196
197        /**
198         * Create a new {@code Codec} object with the given {@code encoding} and
199         * {@code decoder} function.
200         *
201         * @param encoding the genotype factory used for creating new
202         *        {@code Genotypes}
203         * @param decoder decoder function, which converts a {@code Genotype} to a
204         *        value in the problem domain
205         * @param <G> the {@code Gene} type
206         * @param <T> the fitness function argument type in the problem domain
207         * @return a new {@code Codec} object with the given parameters
208         * @throws NullPointerException if one of the arguments is {@code null}.
209         */
210        static <T, G extends Gene<?, G>> Codec<T, G> of(
211                final Factory<Genotype<G>> encoding,
212                final Function<? super Genotype<G>, ? extends T> decoder
213        ) {
214                requireNonNull(encoding);
215                requireNonNull(decoder);
216
217                return new Codec<>() {
218                        @Override
219                        public Factory<Genotype<G>> encoding() {
220                                return encoding;
221                        }
222
223                        @Override
224                        @SuppressWarnings("unchecked")
225                        public Function<Genotype<G>, T> decoder() {
226                                return (Function<Genotype<G>, T>)decoder;
227                        }
228                };
229        }
230
231        /**
232         * Converts two given {@code Codec} instances into one. This lets you divide
233         * a problem into subproblems and combine them again.
234         * <p>
235         * The following example shows how to combine two codecs, which converts a
236         * {@code LongGene} to a {@code LocalDate}, to a codec which combines the
237         * two {@code LocalDate} object (these are the argument types of the
238         * component codecs) to a {@code Duration}.
239         * {@snippet lang = "java":
240         * final Codec<LocalDate, LongGene> dateCodec1 = Codec.of(
241         *     Genotype.of(LongChromosome.of(0, 10_000)),
242         *     gt -> LocalDate.ofEpochDay(gt.gene().longValue())
243         * );
244         *
245         * final Codec<LocalDate, LongGene> dateCodec2 = Codec.of(
246         *     Genotype.of(LongChromosome.of(1_000_000, 10_000_000)),
247         *     gt -> LocalDate.ofEpochDay(gt.gene().longValue())
248         * );
249         *
250         * final Codec<Duration, LongGene> durationCodec = Codec.combine(
251         *     dateCodec1,
252         *     dateCodec2,
253         *     (d1, d2) -> Duration.ofDays(d2.toEpochDay() - d1.toEpochDay())
254         * );
255         *
256         * final Engine<LongGene, Long> engine = Engine
257         *     .builder(Duration::toMillis, durationCodec)
258         *     .build();
259         *
260         * final Phenotype<LongGene, Long> pt = engine.stream()
261         *     .limit(100)
262         *     .collect(EvolutionResult.toBestPhenotype());
263         * System.out.println(pt);
264         *
265         * final Duration duration = durationCodec.decoder()
266         *     .apply(pt.genotype());
267         * System.out.println(duration);
268         *}
269         *
270         * @since 8.1
271         *
272         * @param <G> the gene type
273         * @param <A> the argument type of the first codec
274         * @param <B> the argument type of the second codec
275         * @param <T> the argument type of the compound codec
276         * @param codec1 the first codec
277         * @param codec2 the second codec
278         * @param decoder the decoder which combines the two argument types from the
279         *        given codecs, to the argument type of the resulting codec.
280         * @return a new codec which combines the given {@code codec1} and
281         *        {@code codec2}
282         * @throws NullPointerException if one of the arguments is {@code null}
283         */
284        static <A, B, T, G extends Gene<?, G>> Codec<T, G> combine(
285                final Codec<? extends A, G> codec1,
286                final Codec<? extends B, G> codec2,
287                final BiFunction<? super A, ? super B, ? extends T> decoder
288        ) {
289                @SuppressWarnings("unchecked")
290                final Function<Object[], T> decoderAdapter =
291                        v -> decoder.apply((A)v[0], (B)v[1]);
292
293                return combine(
294                        ISeq.of(codec1, codec2),
295                        decoderAdapter
296                );
297        }
298
299        /**
300         * Combines the given {@code codecs} into one codec. This lets you divide
301         * a problem into subproblems and combine them again.
302         * <p>
303         * The following example combines more than two sub-codecs into one.
304         * {@snippet lang="java":
305         * final Codec<LocalDate, LongGene> dateCodec = Codec.of(
306         *     Genotype.of(LongChromosome.of(0, 10_000)),
307         *     gt -> LocalDate.ofEpochDay(gt.getGene().longValue())
308         * );
309         *
310         * final Codec<Duration, LongGene> durationCodec = Codec.combine(
311         *     ISeq.of(dateCodec, dateCodec, dateCodec),
312         *     dates -> {
313         *         final LocalDate ld1 = (LocalDate)dates[0];
314         *         final LocalDate ld2 = (LocalDate)dates[1];
315         *         final LocalDate ld3 = (LocalDate)dates[2];
316         *
317         *         return Duration.ofDays(
318         *             ld1.toEpochDay() + ld2.toEpochDay() - ld3.toEpochDay()
319         *         );
320         *     }
321         * );
322         *
323         * final Engine<LongGene, Long> engine = Engine
324         *     .builder(Duration::toMillis, durationCodec)
325         *     .build();
326         *
327         * final Phenotype<LongGene, Long> pt = engine.stream()
328         *     .limit(100)
329         *     .collect(EvolutionResult.toBestPhenotype());
330         * System.out.println(pt);
331         *
332         * final Duration duration = durationCodec.decoder()
333         *     .apply(pt.genotype());
334         * System.out.println(duration);
335         * }
336         *
337         * @since 8.1
338         *
339         * @param <G> the gene type
340         * @param <T> the argument type of the compound codec
341         * @param codecs the {@code Codec} sequence of the subproblems
342         * @param decoder the decoder which combines the argument types from the
343         *        given codecs, to the argument type of the resulting codec.
344         * @return a new codec which combines the given {@code codecs}
345         * @throws NullPointerException if one of the arguments is {@code null}
346         * @throws IllegalArgumentException if the given {@code codecs} sequence is
347         *         empty
348         */
349        static <T, G extends Gene<?, G>> Codec<T, G> combine(
350                final ISeq<? extends Codec<?, G>> codecs,
351                final Function<? super Object[], ? extends T> decoder
352        ) {
353                if (codecs.isEmpty()) {
354                        throw new IllegalArgumentException(
355                                "Codecs sequence must not be empty."
356                        );
357                }
358                return codecs.size() == 1
359                        ? Codec.of(
360                                codecs.get(0).encoding(),
361                                gt -> {
362                                        final Object value = codecs.get(0).decoder().apply(gt);
363                                        return decoder.apply(new Object[]{value});
364                                })
365                        : new CompositeCodec<>(codecs, decoder);
366        }
367
368}