001/* 002 * Java Genetic Algorithm Library (jenetics-8.1.0). 003 * Copyright (c) 2007-2024 Franz Wilhelmstötter 004 * 005 * Licensed under the Apache License, Version 2.0 (the "License"); 006 * you may not use this file except in compliance with the License. 007 * You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 * 017 * Author: 018 * Franz Wilhelmstötter (franz.wilhelmstoetter@gmail.com) 019 */ 020package io.jenetics; 021 022import static java.lang.String.format; 023import static java.util.Objects.requireNonNull; 024 025import io.jenetics.util.ISeq; 026import io.jenetics.util.MSeq; 027import io.jenetics.util.RandomRegistry; 028import io.jenetics.util.Seq; 029 030/** 031 * The Monte Carlo selector selects the individuals from a given population 032 * randomly. This selector can be used to measure the performance of another 033 * selector. In general, the performance of a selector should be better than 034 * the selection performance of the Monte Carlo selector. 035 * 036 * @author <a href="mailto:franz.wilhelmstoetter@gmail.com">Franz Wilhelmstötter</a> 037 * @since 1.0 038 * @version 5.0 039 */ 040public final class MonteCarloSelector< 041 G extends Gene<?, G>, 042 C extends Comparable<? super C> 043> 044 implements Selector<G, C> 045{ 046 047 public MonteCarloSelector() { 048 } 049 050 @Override 051 public ISeq<Phenotype<G, C>> select( 052 final Seq<Phenotype<G, C>> population, 053 final int count, 054 final Optimize opt 055 ) { 056 requireNonNull(population, "Population"); 057 requireNonNull(opt, "Optimization"); 058 if (count < 0) { 059 throw new IllegalArgumentException(format( 060 "Selection count must be greater or equal then zero, but was %d.", 061 count 062 )); 063 } 064 065 final MSeq<Phenotype<G, C>> selection; 066 if (count > 0 && !population.isEmpty()) { 067 selection = MSeq.ofLength(count); 068 final var random = RandomRegistry.random(); 069 final int size = population.size(); 070 071 for (int i = 0; i < count; ++i) { 072 final int pos = random.nextInt(size); 073 selection.set(i, population.get(pos)); 074 } 075 } else { 076 selection = MSeq.empty(); 077 } 078 079 return selection.toISeq(); 080 } 081 082 @Override 083 public String toString() { 084 return format("%s", getClass().getSimpleName()); 085 } 086 087}