001/* 002 * Java Genetic Algorithm Library (jenetics-8.1.0). 003 * Copyright (c) 2007-2024 Franz Wilhelmstötter 004 * 005 * Licensed under the Apache License, Version 2.0 (the "License"); 006 * you may not use this file except in compliance with the License. 007 * You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 * 017 * Author: 018 * Franz Wilhelmstötter (franz.wilhelmstoetter@gmail.com) 019 */ 020package io.jenetics; 021 022import static java.lang.String.format; 023 024import io.jenetics.util.Seq; 025 026/** 027 * <p> 028 * In linear-ranking selection the individuals are sorted according to their 029 * fitness values. The rank <i>N</i> is assignee to the best individual and the 030 * rank 1 to the worst individual. The selection probability <i>P(i)</i> of 031 * individual <i>i</i> is linearly assigned to the individuals according to 032 * their rank. 033 * </p> 034 * <p><img 035 * src="doc-files/linear-rank-selector.svg" 036 * alt="P(i)=\frac{1}{N}\left(n^{-}+\left(n^{+}-n^{-}\right)\frac{i-1}{N-1}\right)" 037 * > 038 * </p> 039 * 040 * Here <i>n</i><sup><i>-</i></sup>/<i>N</i> is the probability of the worst 041 * individual to be selected and <i>n</i><sup><i>+</i></sup>/<i>N</i> the 042 * probability of the best individual to be selected. As the population size is 043 * held constant, the conditions <i>n</i><sup><i>+</i></sup> = 2 - <i>n</i><sup><i>-</i></sup> 044 * and <i>n</i><sup><i>-</i></sup> >= 0 must be fulfilled. Note that all individuals 045 * get a different rank, i.e., a different selection probability, even if the 046 * have the same fitness value. <p> 047 * 048 * <i> 049 * T. Blickle, L. Thiele, A comparison of selection schemes used 050 * in evolutionary algorithms, Technical Report, ETH Zurich, 1997, page 37. 051 * <a href="http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.9584"> 052 * http://citeseer.ist.psu.edu/blickle97comparison.html 053 * </a> 054 * </i> 055 * 056 * @author <a href="mailto:franz.wilhelmstoetter@gmail.com">Franz Wilhelmstötter</a> 057 * @since 1.0 058 * @version 5.0 059 */ 060public final class LinearRankSelector< 061 G extends Gene<?, G>, 062 C extends Comparable<? super C> 063> 064 extends ProbabilitySelector<G, C> 065{ 066 private final double _nminus; 067 private final double _nplus; 068 069 /** 070 * Create a new LinearRankSelector with the given values for {@code nminus}. 071 * 072 * @param nminus {@code nminus/N} is the probability of the worst phenotype 073 * to be selected. 074 * @throws IllegalArgumentException if {@code nminus < 0}. 075 */ 076 public LinearRankSelector(final double nminus) { 077 super(true); 078 079 if (nminus < 0) { 080 throw new IllegalArgumentException(format( 081 "nminus is smaller than zero: %s", nminus 082 )); 083 } 084 085 _nminus = nminus; 086 _nplus = 2 - _nminus; 087 } 088 089 /** 090 * Create a new LinearRankSelector with {@code nminus := 0.5}. 091 */ 092 public LinearRankSelector() { 093 this(0.5); 094 } 095 096 /** 097 * This method sorts the population in descending order while calculating the 098 * selection probabilities. 099 */ 100 @Override 101 protected double[] probabilities( 102 final Seq<Phenotype<G, C>> population, 103 final int count 104 ) { 105 assert population != null : "Population must not be null. "; 106 assert !population.isEmpty() : "Population is empty."; 107 assert count > 0 : "Population to select must be greater than zero. "; 108 109 final double N = population.size(); 110 final double[] probabilities = new double[population.size()]; 111 112 if (N == 1) { 113 probabilities[0] = 1; 114 } else { 115 for (int i = probabilities.length; --i >= 0; ) { 116 probabilities[probabilities.length - i - 1] = 117 (_nminus + (_nplus - _nminus)*i/(N - 1))/N; 118 } 119 } 120 121 return probabilities; 122 } 123 124 @Override 125 public String toString() { 126 return format( 127 "%s[(n-)=%f, (n+)=%f]", 128 getClass().getSimpleName(), _nminus, _nplus 129 ); 130 } 131 132}