001/* 002 * Java Genetic Algorithm Library (jenetics-8.1.0). 003 * Copyright (c) 2007-2024 Franz Wilhelmstötter 004 * 005 * Licensed under the Apache License, Version 2.0 (the "License"); 006 * you may not use this file except in compliance with the License. 007 * You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 * 017 * Author: 018 * Franz Wilhelmstötter (franz.wilhelmstoetter@gmail.com) 019 */ 020package io.jenetics; 021 022import static java.lang.Double.compare; 023import static java.lang.Math.pow; 024import static java.lang.String.format; 025 026import io.jenetics.util.Seq; 027 028/** 029 * <p> 030 * An alternative to the "weak" {@code LinearRankSelector} is to assign 031 * survival probabilities to the sorted individuals using an exponential 032 * function. 033 * </p> 034 * <p><img 035 * src="doc-files/exponential-rank-selector.svg" 036 * alt="P(i)=\left(c-1\right)\frac{c^{i-1}}{c^{N}-1}" 037 * >, 038 * </p> 039 * where <i>c</i> must within the range {@code [0..1)}. 040 * 041 * <p> 042 * A small value of <i>c</i> increases the probability of the best phenotypes to 043 * be selected. If <i>c</i> is set to zero, the selection probability of the best 044 * phenotype is set to one. The selection probability of all other phenotypes is 045 * zero. A value near one equalizes the selection probabilities. 046 * </p> 047 * <p> 048 * This selector sorts the population in descending order while calculating the 049 * selection probabilities. 050 * </p> 051 * 052 * @author <a href="mailto:franz.wilhelmstoetter@gmail.com">Franz Wilhelmstötter</a> 053 * @since 1.0 054 * @version 5.0 055 */ 056public final class ExponentialRankSelector< 057 G extends Gene<?, G>, 058 C extends Comparable<? super C> 059> 060 extends ProbabilitySelector<G, C> 061{ 062 063 private final double _c; 064 065 /** 066 * Create a new exponential rank selector. 067 * 068 * @param c the <i>c</i> value 069 * @throws IllegalArgumentException if {@code c} is not within the range 070 * {@code [0..1)}. 071 */ 072 public ExponentialRankSelector(final double c) { 073 super(true); 074 075 if (compare(c, 0) < 0 || compare(c, 1) >= 0) { 076 throw new IllegalArgumentException(format( 077 "Value %f is out of range [0..1): ", c 078 )); 079 } 080 _c = c; 081 } 082 083 /** 084 * Create a new selector with the default value of 0.975. 085 */ 086 public ExponentialRankSelector() { 087 this(0.975); 088 } 089 090 /** 091 * This method sorts the population in descending order while calculating the 092 * selection probabilities. 093 */ 094 @Override 095 protected double[] probabilities( 096 final Seq<Phenotype<G, C>> population, 097 final int count 098 ) { 099 assert population != null : "Population must not be null. "; 100 assert !population.isEmpty() : "Population is empty."; 101 assert count > 0 : "Population to select must be greater than zero. "; 102 103 final double N = population.size(); 104 final double[] probabilities = new double[population.size()]; 105 106 final double b = (_c - 1.0)/(pow(_c, N) - 1.0); 107 for (int i = 0; i < probabilities.length; ++i) { 108 probabilities[i] = pow(_c, i)*b; 109 } 110 111 return probabilities; 112 } 113 114 @Override 115 public String toString() { 116 return format("%s[c=%f]", getClass().getSimpleName(), _c); 117 } 118 119}