001/* 002 * Java Genetic Algorithm Library (jenetics-7.2.0). 003 * Copyright (c) 2007-2023 Franz Wilhelmstötter 004 * 005 * Licensed under the Apache License, Version 2.0 (the "License"); 006 * you may not use this file except in compliance with the License. 007 * You may obtain a copy of the License at 008 * 009 * http://www.apache.org/licenses/LICENSE-2.0 010 * 011 * Unless required by applicable law or agreed to in writing, software 012 * distributed under the License is distributed on an "AS IS" BASIS, 013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 014 * See the License for the specific language governing permissions and 015 * limitations under the License. 016 * 017 * Author: 018 * Franz Wilhelmstötter (franz.wilhelmstoetter@gmail.com) 019 */ 020package io.jenetics; 021 022import static java.lang.String.format; 023import static java.util.Objects.requireNonNull; 024 025import java.util.Comparator; 026import java.util.random.RandomGenerator; 027import java.util.stream.Stream; 028 029import io.jenetics.util.ISeq; 030import io.jenetics.util.MSeq; 031import io.jenetics.util.RandomRegistry; 032import io.jenetics.util.Seq; 033 034/** 035 * In tournament selection the best individual from a random sample of <i>s</i> 036 * individuals is chosen from the population <i>P<sub>g</sub></i>. The samples 037 * are drawn with replacement. An individual will win a tournament only if its 038 * fitness is greater than the fitness of the other <i>s-1</i> competitors. 039 * Note that the worst individual never survives, and the best individual wins 040 * in all the tournaments it participates. The selection pressure can be varied 041 * by changing the tournament size <i>s</i> . For large values of <i>s</i>, weak 042 * individuals have less chance being selected. 043 * 044 * @see <a href="http://en.wikipedia.org/wiki/Tournament_selection">Tournament selection</a> 045 * 046 * @author <a href="mailto:franz.wilhelmstoetter@gmail.com">Franz Wilhelmstötter</a> 047 * @since 1.0 048 * @version 6.0 049 */ 050public class TournamentSelector< 051 G extends Gene<?, G>, 052 C extends Comparable<? super C> 053> 054 implements Selector<G, C> 055{ 056 057 private final Comparator<? super Phenotype<G, C>> _comparator; 058 private final int _sampleSize; 059 060 /** 061 * Create a tournament selector with the give {@code comparator} and 062 * sample size. The sample size must be greater than one. 063 * 064 * @since 6.0 065 * 066 * @param comparator the comparator use for comparing two individuals during 067 * a tournament 068 * @param sampleSize the number of individuals involved in one tournament 069 * @throws IllegalArgumentException if the sample size is smaller than two 070 * @throws NullPointerException if the given {@code comparator} is 071 * {@code null} 072 */ 073 public TournamentSelector( 074 final Comparator<? super Phenotype<G, C>> comparator, 075 final int sampleSize 076 ) { 077 _comparator = requireNonNull(comparator); 078 if (sampleSize < 2) { 079 throw new IllegalArgumentException( 080 "Sample size must be greater than one, but was " + sampleSize 081 ); 082 } 083 _sampleSize = sampleSize; 084 } 085 086 /** 087 * Create a tournament selector with the give sample size. The sample size 088 * must be greater than one. 089 * 090 * @param sampleSize the number of individuals involved in one tournament 091 * @throws IllegalArgumentException if the sample size is smaller than two. 092 */ 093 public TournamentSelector(final int sampleSize) { 094 this(Phenotype::compareTo, sampleSize); 095 } 096 097 /** 098 * Create a tournament selector with sample size two. 099 */ 100 public TournamentSelector() { 101 this(Phenotype::compareTo,2); 102 } 103 104 /** 105 * Return the sample size of the tournament selector. 106 * 107 * @since 5.0 108 * 109 * @return the sample size of the tournament selector 110 */ 111 public int sampleSize() { 112 return _sampleSize; 113 } 114 115 @Override 116 public ISeq<Phenotype<G, C>> select( 117 final Seq<Phenotype<G, C>> population, 118 final int count, 119 final Optimize opt 120 ) { 121 requireNonNull(population, "Population"); 122 requireNonNull(opt, "Optimization"); 123 if (count < 0) { 124 throw new IllegalArgumentException(format( 125 "Selection count must be greater or equal then zero, but was %s", 126 count 127 )); 128 } 129 130 final var random = RandomRegistry.random(); 131 return population.isEmpty() 132 ? ISeq.empty() 133 : MSeq.<Phenotype<G, C>>ofLength(count) 134 .fill(() -> select(population, opt, random)) 135 .toISeq(); 136 } 137 138 private Phenotype<G, C> select( 139 final Seq<Phenotype<G, C>> population, 140 final Optimize opt, 141 final RandomGenerator random 142 ) { 143 final int N = population.size(); 144 145 assert _sampleSize >= 2; 146 assert N >= 1; 147 148 final Comparator<? super Phenotype<G, C>> cmp = opt == Optimize.MAXIMUM 149 ? _comparator 150 : _comparator.reversed(); 151 152 return Stream.generate(() -> population.get(random.nextInt(N))) 153 .limit(_sampleSize) 154 .max(cmp) 155 .orElseThrow(AssertionError::new); 156 } 157 158 @Override 159 public String toString() { 160 return format("%s[s=%d]", getClass().getSimpleName(), _sampleSize); 161 } 162 163}