
JENETICS
LIBRARY USER’S MANUAL

FRANZ WILHELMSTÖTTER VERSION 3.6

Franz Wilhelmstötter
franz.wilhelmstoetter@gmx.at

http://jenetics.io

3.6.0—2016/09/24

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Austria
License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-sa/3.0/at/ or send a letter to Creative
Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

mailto:franz.wilhelmstoetter@gmx.at
http://jenetics.io
http://creativecommons.org/licenses/by-sa/3.0/at/
http://creativecommons.org/licenses/by-sa/3.0/at/

Abstract
Jenetics is an Genetic Algorithm and Evolutionary Algorithm

library, respectively, written in modern day Java. It is designed with a
clear separation of the several algorithm concepts, e. g. Gene, Chromo-
some, Genotype, Phenotype, Population and fitness Function. Jenetics
allows you to minimize or maximize the given fitness function without
tweaking it. In contrast to other GA implementations, the library uses
the concept of an evolution stream (EvolutionStream) for executing the
evolution steps. Since the EvolutionStream implements the Java Stream
interface, it works smoothly with the rest of the Java Stream API. This
manual describes the concepts implemented in the Jenetics project and
gives examples and best practice tips.

ii

CONTENTS CONTENTS

Contents
1 Introduction 1

2 Architecture 3

3 Base classes 4
3.1 Domain classes . 5

3.1.1 Gene . 5
3.1.2 Chromosome . 6
3.1.3 Genotype . 6
3.1.4 Phenotype . 7
3.1.5 Population . 8

3.2 Operation classes . 8
3.2.1 Selector . 8
3.2.2 Alterer . 12

3.3 Engine classes . 15
3.3.1 Fitness function . 16
3.3.2 Fitness scaler . 17
3.3.3 Engine . 17
3.3.4 EvolutionStream . 19
3.3.5 EvolutionResult . 21
3.3.6 EvolutionStatistics . 22

4 Nuts and bolts 23
4.1 Concurrency . 23
4.2 Randomness . 24
4.3 Serialization . 27
4.4 Utility classes . 30

5 Extending Jenetics 31
5.1 Genes . 31
5.2 Chromosomes . 33
5.3 Selectors . 34
5.4 Alterers . 35
5.5 Statistics . 35
5.6 Engine . 36

6 Advanced topics 37
6.1 Encoding . 37

6.1.1 Real function . 37
6.1.2 Scalar function . 38
6.1.3 Vector function . 39
6.1.4 Affine transformation . 39
6.1.5 Graph . 41

6.2 Codec . 43
6.2.1 Scalar codec . 44
6.2.2 Vector codec . 45
6.2.3 Subset codec . 45
6.2.4 Permutation codec . 47
6.2.5 Composite codec . 48

iii

CONTENTS CONTENTS

6.3 Problem . 49
6.4 Validation . 50
6.5 Termination . 51

6.5.1 Fixed generation . 51
6.5.2 Steady fitness . 52
6.5.3 Evolution time . 54
6.5.4 Fitness threshold . 55

6.6 Evolution performance . 55

7 Internals 56
7.1 PRNG testing . 56
7.2 Random seeding . 58

8 Incubation 60
8.1 Weasel program . 60

9 Examples 63
9.1 Ones counting . 63
9.2 Real function . 65
9.3 Rastrigin function . 67
9.4 0/1 Knapsack . 69
9.5 Traveling salesman . 71
9.6 Evolving images . 73

10 Build 75

11 License 78

References 79

iv

LIST OF FIGURES LIST OF FIGURES

List of Figures
2.1 Evolution engine model . 3
2.2 Package structure . 4
3.1 Domain model . 5
3.2 Genotype structure . 7
3.3 Fitness proportional selection . 10
3.4 Stochastic-universal selection . 12
3.5 Single-point crossover . 15
3.6 2-point crossover . 15
3.7 3-point crossover . 16
3.8 Partially-matched crossover . 16
4.1 Block splitting . 26
4.2 Leapfrogging . 26
4.3 Seq class diagram . 30
6.1 Undirected graph and adjacency matrix 42
6.2 Directed graph and adjacency matrix 42
6.3 Weighted graph and adjacency matrix 43
6.4 Fixed generation termination . 52
6.5 Steady fitness termination . 53
6.6 Execution time termination . 54
6.7 Fitness threshold termination . 55
6.8 Selector-performance (Knapsack) 56
9.1 Real function . 65
9.2 Rastrigin function . 67
9.3 Evolving images UI . 74
9.4 Evolving Mona Lisa images . 76

v

1 INTRODUCTION

1 Introduction
Jenetics is a library, written in Java1, which provides an genetic algorithm (GA)
implementation. It has no runtime dependencies to other libraries, except the
Java 8 runtime. Since the library is available on maven central repository2, it
can be easily integrated into existing projects. The very clear structuring of the
different parts of the GA allows an easy adaption for different problem domains.

This manual is not an introduction or a tutorial for genetic and/or evolu-
tionary algorithms in general. It is assumed that the reader has a knowledge
about the structure and the functionality of genetic algorithms. Good in-
troductions to GAs can be found in[12], [8], [11], [7] or [15].

To give a first impression of the library usage, lets start with a simple »Hello
World« program. This first example implements the well known bit-counting
problem.

1 import org . j e n e t i c s . BitChromosome ;
2 import org . j e n e t i c s . BitGene ;
3 import org . j e n e t i c s . Genotype ;
4 import org . j e n e t i c s . eng ine . Engine ;
5 import org . j e n e t i c s . eng ine . Evo lut ionResu l t ;
6 import org . j e n e t i c s . u t i l . Factory ;
7

8 public f i n a l class HelloWorld {
9 // 2 .) De f i n i t i o n o f the f i t n e s s func t i on .

10 private stat ic I n t eg e r eva l (f i n a l Genotype<BitGene> gt) {
11 return ((BitChromosome) gt . getChromosome ()) . bitCount () ;
12 }
13

14 public stat ic void main (f i n a l St r ing [] a rgs) {
15 // 1 .) Def ine the genotype (f a c t o r y) s u i t a b l e
16 // f o r the problem .
17 f i n a l Factory<Genotype<BitGene>> g t f =
18 Genotype . o f (BitChromosome . o f (10 , 0 . 5)) ;
19

20 // 3 .) Create the execut ion environment .
21 f i n a l Engine<BitGene , Integer> engine = Engine
22 . bu i l d e r (HelloWorld : : eval , g t f)
23 . bu i ld () ;
24

25 // 4 .) S ta r t the execut ion (evo lu t i on) and
26 // c o l l e c t the r e s u l t .
27 f i n a l Genotype<BitGene> r e s u l t = engine . stream ()
28 . l im i t (100)
29 . c o l l e c t (Evo lut ionResu l t . toBestGenotype ()) ;
30

31 System . out . p r i n t l n (" He l lo World : \ n\ t " + r e s u l t) ;
32 }
33 }

Listing 1: »Hello World« GA

1The library is build with and depends on Java SE 8: http://www.oracle.com/
technetwork/java/javase/downloads/index.html

2If you are using Gradle, you can use the following dependency string:
»org.bitbucket.fwilhelm:org.jenetics:3.6.0«.

1

http://en.wikipedia.org/wiki/Genetic_algorithm
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

1 INTRODUCTION

In contrast to other GA implementations, Jenetics uses the concept of an
evolution stream (EvolutionStream) for executing the evolution steps. Since
the EvolutionStream implements the Java Stream interface, it works smoothly
with the rest of the Java Stream API. Now let’s have a closer look at listing 1
on the preceding page and discuss this simple program step by step:

1. The probably most challenging part, when setting up a new evolution
Engine, is to transform the problem domain into an appropriate Genotype
(factory) representation.3 In our example we want to count the number
of ones of a BitChromosome. Since we are counting only the ones of one
chromosome, we are adding only one BitChromosome to our Genotype.
In general, the Genotype can be created with 1 to n chromosomes. For
detailed description of the genotype’s structure have a look at section 3.1.3
on page 6.

2. Once this is done, the fitness function, which should be maximized, can
be defined. Utilizing the new language features introduced in Java 8,
we simply write a private static method, which takes the genotype we
defined and calculate it’s fitness value. If we want to use the optimized bit-
counting method, bitCount(), we have to cast the Chromosome<BitGene>
class to the actual used BitChromosome class. Since we know for sure that
we created the Genotype with a BitChromosome, this can be done safely.
A reference to the evalmethod is then used as fitness function and passed
to the Engine.build method.

3. In the third step we are creating the evolution Engine, which is respon-
sible for changing, respectively evolving, a given population. The Engine
is highly configurable and takes parameters for controlling the evolution-
ary and the computational environment. For changing the evolutionary
behavior, you can set different alterers and selectors (see section 3.2 on
page 8). By changing the used Executor service, you control the number
of threads, the Engine is allowed to use. An new Engine instance can only
be created via its builder, which is created by calling the Engine.builder
method.

4. In the last step, we can create a new EvolutionStream from our Engine.
The EvolutionStream is the model (or view) of the evolutionary process.
It serves as a »process handle« and also allows you, among other things,
to control the termination of the evolution. In our example, we simply
truncate the stream after 100 generations. If you don’t limit the stream,
the EvolutionStream will not terminate and run forever. The final re-
sult, the best Genotype in our example, is then collected with one of the
predefined collectors of the EvolutionResult class.

As the example shows, Jenetics makes heavy use of the Stream and Collector
classes in Java 8. Also the newly introduced lambda expressions and the func-
tional interfaces (SAM types) play an important roll in the library design.

There are many other GA implementations out there and they may slightly
differ in the order of the single execution steps. Jenetics uses an classical ap-
proach. Listing 2 on the following page shows the (imperative) pseudo-code of
the Jenetics genetic algorithm steps.

3Section 6.1 on page 37 describes some common problem encodings.

2

2 ARCHITECTURE

1 P0 ← Pinitial

2 F (P0)
3 while ! finished do
4 g ← g + 1
5 Sg ← selectS(Pg−1)
6 Og ← selectO(Pg−1)
7 Og ← alter(Og)
8 Pg ← filter[gi ≥ gmax](Sg) + filter[gi ≥ gmax](Og)
9 F (Pg)

Listing 2: Genetic algorithm

Line (1) creates the initial population and line (2) calculates the fitness value
of the individuals. The initial population is created implicitly before the first
evolution step is performed. Line (4) increases the generation number and
line (5) and (6) selects the survivor and the offspring population. The off-
spring/survivor fraction is determined by the offspringFraction property of
the Engine.Builder. The selected offspring are altered in line (7). The next
line combines the survivor population and the altered offspring population—
after removing the died individuals—to the new population. The steps from
line (4) to (9) are repeated until a given termination criterion is fulfilled.

2 Architecture
The basic metaphor of the Jenetics library is the Evolution Stream, implemented
via the Java 8 Stream API. Therefore it is no longer necessary (and advised)
to perform the evolution steps in an imperative way. An evolution stream is
powered by—and bound to—an Evolution Engine, which performs the needed
evolution steps for one generation; the steps are described in the body of the
while-loop of listing 2. Once the evolution engine is created, it can be used
by multiple evolution streams, which can be safely used in different execution
threads. This is possible, because the evolution Engine doesn’t have any muta-
ble global state. It is practically a stateless function, fE : P→ P, which maps a
start population, P, to an evolved result population. The Engine function, fE ,
is, of course, non-deterministic. Calling it twice with the same start population
will lead to different result populations.

Figure 2.1: Evolution engine model

Figure 2.1 illustrates the main evolution engine classes, together with its
dependencies. Since the Engine class itself is immutable, and can’t be changed
after creation, it is build/configured via a builder. After the Engine has been
created, it can be used to create an arbitrary number of EvolutionStreams.
The EvolutionStream is used to control the evolutionary process and collect
the final result. This is done in the same way as for the normal java.util.-
stream.Stream classes. With the additional limit(Predicate) method, it

3

3 BASE CLASSES

is possible to truncate the EvolutionStream if some termination criteria is
fulfilled.

Figure 2.2: Package structure

Diagram 2.2 shows the package structure of the library which consists of the
following packages:

org.jenetics This is the base package of the Jenetics library and contains all
domain classes, like Gene, Chromosome or Genotype. Most of this types
are immutable data classes and doesn’t implement any behavior. It also
contains the Selector and Alterer interfaces and its implementations.
The classes in this package are (almost) sufficient to implement an own
GA.

org.jenetics.engine This package contains the actual GA implementation
classes, e. g. Engine, EvolutionStream or EvolutionResult. They
mainly operate on the domain classes of the org.jenetics package.

org.jenetics.stat This package contains additional statistics classes which
are not available in the Java core library. Java only includes classes for cal-
culating the sum and the average of a given numeric stream (e. g. Double-
SummaryStatistics). With the additions in this package it is also possi-
ble to calculate the variance, skewness and kurtosis—using the Double-
MomentStatistics class. The EvolutionStatistics object, which can
be calculated for every generation, relies on the classes of this package.

org.jenetics.util This package contains the collection classes (Seq, ISeq
and MSeq) which are used in the public interfaces of the Chromosome
and Genotype. It also contains the RandomRegistry class, which imple-
ments the global PRNG lookup, as well as helper IO classes for serializing
Genotypes and whole Populations.

3 Base classes
This chapter describes the main classes which are needed to setup and run an
genetic algorithm with the Jenetics4 library. They can roughly divided into
three types:

4The documentation of the whole API is part of the download package or can be viewed
online: http://jenetics.io/javadoc/org.jenetics/3.6/index.html.

4

http://jenetics.io/javadoc/org.jenetics/3.6/index.html

3.1 Domain classes 3 BASE CLASSES

Domain classes This classes form the domain model of the evolutionary algo-
rithm and contain the structural classes like Gene and Chromosome. They
are located in the org.jenetics package.

Operation classes This classes operates on the domain classes and includes
the Alterer and Selector classes. They are also located in the org-
.jenetics package.

Engine classes This classes implements the actual evolutionary algorithm and
reside solely in the org.jenetics.engine package.

3.1 Domain classes
Most of the domain classes are pure data classes and can be treated as value
objects5. All Gene and Chromosome implementations are immutable as well as
the Genotype and Phenotype class. The only exception is the Population class,
where it is possible to add and/or remove elements after it’s creation.

Figure 3.1: Domain model

Figure 3.1 shows the class diagram of the domain classes. All domain
classes are located in the org.jenetics package. The Gene is the base of the
class structure. Genes are aggregated in Chromosomes. One to n Chromosomes
are aggregated in Genotypes. A Genotype and a fitness Function form the
Phenotype, which are collected into a Population.

3.1.1 Gene

Genes are the basic building blocks of the Jenetics library. They contain the
actual information of the encoded solution, the allele. Some of the implemen-
tations also contains domain information of the wrapped allele. This is the case
for all BoundedGene, which contain the allowed minimum and maximum values.
All Gene implementations are final and immutable. In fact, they are all value-
based classes and fulfill the properties which are described in the Java 8 API
documentation[10].6

Beside the container functionality for the allele, every Gene is its own factory
and is able to create new, random instances of the same type and with the same

5https://en.wikipedia.org/wiki/Value_object
6It is also worth reading the blog entry from Stephen Colebourne: http://blog.joda.org/

2014/03/valjos-value-java-objects.html

5

https://en.wikipedia.org/wiki/Value_object
http://blog.joda.org/2014/03/valjos-value-java-objects.html
http://blog.joda.org/2014/03/valjos-value-java-objects.html

3.1 Domain classes 3 BASE CLASSES

constraints. The factory methods are used by the Alterers for creating new
Genes from the existing one and play a crucial role by the exploration of the
problem space.

1 public interface Gene<A, G extends Gene<A, G>>
2 extends Factory<G>, V e r i f i a b l e
3 {
4 public A ge tA l l e l e () ;
5 public G newInstance () ;
6 public G newInstance (A a l l e l e) ;
7 public boolean i sVa l i d () ;
8 }

Listing 3: Gene interface

Listing 3 shows the most important methods of the Gene interface. The
isValid method, introduced by the Verifiable interface, allows the gene to
mark itself as invalid. All invalid genes are replaced with new ones during the
evolution phase.

The available Gene implementations in the Jenetics library should cover a
wide range of problem encodings. Refer to chapter 5.1 on page 31 for how to
implement your own Gene types.

3.1.2 Chromosome

A Chromosome is a collection of Genes which contains at least one Gene. This
allows to encode problems which requires more than one Gene. Like the Gene
interface, the Chromosome is also it’s own factory and allows to create a new
Chromosome from a given Gene sequence.

1 public interface Chromosome<G extends Gene<?, G>>
2 extends Factory<Chromosome<G>>, I t e r ab l e <G>, V e r i f i a b l e
3 {
4 public Chromosome<G> newInstance (ISeq<G> genes) ;
5 public G getGene (int index) ;
6 public ISeq<G> toSeq () ;
7 public int l ength () ;
8 }

Listing 4: Chromosome interface

Listing 4 shows the main methods of the Chromosome interface. This are
the methods for accessing single Genes by index and as an ISeq respectively,
and the factory method for creating a new Chromosome from a given sequence
of Genes. The factory method is used by the Alterer classes which were able
to create altered Chromosome from a (changed) Gene sequence.

3.1.3 Genotype

The central class, the evolution Engine is working with, is the Genotype. It
is the structural and immutable representative of an individual and consists of
one to n Chromosomes. All Chromosomes must be parameterized with the same
Gene type, but it is allowed to have different lengths and constraints.

Figure 3.2 on the following page shows the Genotype structure. A Genotype
consists of NG Chromosomes and a Chromosome consists of NC[i] Genes (de-
pending on the Chromosome). The overall number of Genes of a Genotype is

6

3.1 Domain classes 3 BASE CLASSES

Figure 3.2: Genotype structure

given by the sum of the Chromosome’s Genes, which can be accessed via the
Genotype.getNumberOfGenes() method:

Ng =
NG−1∑

i=0
NC[i] (3.1)

As already mentioned, the Chromosomes of a Genotype doesn’t have to have
necessarily the same size. It is only required that all genes are from the same
type and the Genes within a Chromosome have the same constraints; e. g. the
same min- and max values for numerical Genes.

1 Genotype<DoubleGene> genotype = Genotype . o f (
2 DoubleChromosome . o f (0 . 0 , 1 . 0 , 8) ,
3 DoubleChromosome . o f (1 . 0 , 2 . 0 , 10) ,
4 DoubleChromosome . o f (0 . 0 , 10 . 0 , 9) ,
5 DoubleChromosome . o f (0 . 1 , 0 . 9 , 5)
6) ;

The code snippet in the listing above creates a Genotype with the same
structure as shown in figure 3.2. In this example the DoubleGene has been
chosen as Gene type.

3.1.4 Phenotype

The Phenotype is the actual representative of an individual and consists of
the Genotype and the fitness Function, which is used to (lazily) calculate the
Genotype’s fitness value.7 It is only a container which forms the environment
of the Genotype and doesn’t change the structure. Like the Genotype, the
Phenotype is immutable and can’t be changed after creation.

1 public f i n a l class Phenotype<
2 G extends Gene<?, G>,
3 C extends Comparable<? super C>
4 >
5 implements Comparable<Phenotype<G, C>>
6 {

7Since the fitness Function is shared by all Phenotypes, calls to the fitness Function must
be idempotent. See section 3.3.1 on page 16.

7

3.2 Operation classes 3 BASE CLASSES

7 public C ge tF i tn e s s () ;
8 public Genotype<G> getGenotype () ;
9 public long getAge (long currentGenerat ion) ;

10 public void eva luate () ;
11 }

Listing 5: Phenotype class

Listing 5 on the previous page shows the main methods of the Phenotype.
The fitness property will return the actual fitness value of the Genotype,
which can be fetched with the getGenotype method. To make the runtime
behavior predictable, the fitness value is evaluated lazily. Either by querying the
fitness property or through the call of the evaluate method. The evolution
Engine is calling the evaluate method in a separate step and makes the fitness
evaluation time available through the EvolutionDurations class. Additionally
to the fitness value, the Phenotype contains the generation when it was created.
This allows to calculate the current age and the removal of overaged individuals
from the Population.

3.1.5 Population

The end of the class hierarchy of the domain model is the Population. It is a
collection of individuals and forms the start and the end of an evolution step.

1 public f i n a l class Population<
2 G extends Gene<?, G>,
3 C extends Comparable<? super C>
4 >
5 implements List<Phenotype<G, C>>
6 {
7 public Phenotype<G, C> get (int index) ;
8 public void add (Phenotype<G, C> phenotype) ;
9 public void sortWith (Comparator<? super C> comparator) ;

10 }

Listing 6: Population class

Listing 6 gives on overview of the most important methods of the Population
class. In addition to the List methods, it provides a method for sorting the
Phenotypes. Some Selector implementations require a sorted list of indi-
viduals according its fitness value. Calling population.sortWith(optimize-
.descending()) will sort the Population, so that the first element will be the
individual with the best fitness.

3.2 Operation classes
Genetic operators are used for creating genetic diversity (Alterer) and selecting
potentially useful solutions for recombination (Selector). This section gives an
overview about the genetic operators available in the Jenetics library. It also
contains some theoretical information, which should help you to choose the right
combination of operators and parameters, for the problem to be solved.

3.2.1 Selector

Selectors are responsible for selecting a given number of individuals from the
population. The selectors are used to divide the population into survivors and

8

https://en.wikipedia.org/wiki/Genetic_operator

3.2 Operation classes 3 BASE CLASSES

offspring. The selectors for offspring and for the survivors can be chosen inde-
pendently.

The selection process of the Jenetics library acts on Phenotypes and indi-
rectly, via the fitness function, on Genotypes. Direct Gene- or Population
selection is not supported by the library.

1 Engine<DoubleGene , Double> engine = Engine . bu i l d e r (. . .)
2 . o f f s p r i n gF r a c t i o n (0 . 7)
3 . s u r v i v o r s S e l e c t o r (new RouletteWhee lSe lector <>())
4 . o f f s p r i n g S e l e c t o r (new TournamentSelector <>())
5 . bu i ld () ;

The offspringFraction, fO ∈ [0, 1], determines the number of selected
offspring

NOg
= ‖Og‖ = rint (‖Pg‖ · fO) (3.2)

and the number of selected survivors

NSg = ‖Sg‖ = ‖Pg‖ − ‖Og‖ . (3.3)

The Jenetics library contains the following selector implementations:

• TournamentSelector

• TruncationSelector

• MonteCarloSelector

• ProbabilitySelector

• RouletteWheelSelector

• LinearRankSelector

• ExponentialRankSelector

• BoltzmannSelector

• StochasticUniversalSelector

Beside the well known standard selector implementation the Probability-
Selector is the base of a set of fitness proportional selectors.

Tournament selector In tournament selection the best individual from a
random sample of s individuals is chosen from the population Pg. The samples
are drawn with replacement. An individual will win a tournament only if the
fitness is greater than the fitness of the other s − 1 competitors. Note that
the worst individual never survives, and the best individual wins in all the
tournaments it participates. The selection pressure can be varied by changing
the tournament sizes. For large values of s, weak individuals have less chance
of being selected.

Truncation selector In truncation selection individuals are sorted according
to their fitness. (This is one of the selectors, which relies on the sortWith
method of the Population class.) Only the n best individuals are selected.
The truncation selection is a very basic selection algorithm. It has it’s strength
in fast selecting individuals in large populations, but is not very often used in
practice.

9

https://en.wikipedia.org/wiki/Tournament_selection
https://en.wikipedia.org/wiki/Truncation_selection

3.2 Operation classes 3 BASE CLASSES

Monte Carlo selector The Monte Carlo selector selects the individuals from
a given population randomly. This selector can be used to measure the perfor-
mance of a other selectors. In general, the performance of a selector should be
better than the selection performance of the Monte Carlo selector.

Probability selectors Probability selectors are a variation of fitness propor-
tional selectors and selects individuals from a given population based on it’s
selection probability P (i). Fitness proportional selection works as shown in

Figure 3.3: Fitness proportional selection

figure 3.3. An uniform distributed random number r ∈ [0, F) specifies which
individual is selected, by argument minimization:

i← argmin
n∈[0,N)

{
r <

n∑
i=0

fi

}
, (3.4)

where N is the number of individuals and fi the fitness value of the ith indi-
vidual. The probability selector works the same way, only the fitness value fi

is replaced by the individual’s selection probability P (i). It is not necessary
to sort the population. The selection probability of an individual i follows a
binomial distribution

P (i, k) =
(
n
k

)
P (i)k (1− P (i))n−k (3.5)

where n is the overall number of selected individuals and k the number of
individuali in the set of selected individuals. The runtime complexity of the
implemented probability selectors is O(n + log(n)) instead of O(n2) as for the
naive approach: A binary (index) search is performed on the summed probability
array.

Roulette-wheel selector The roulette-wheel selector is also known as fitness
proportional selector. In the Jenetics library it is implemented as probability
selector. The fitness value fi is used to calculate the selection probability of
individual i.

P (i) = fi∑N
j=1 fj

(3.6)

10

3.2 Operation classes 3 BASE CLASSES

Selecting n individuals from a given population is equivalent to play n times
on the roulette-wheel. The population don’t have to be sorted before select-
ing the individuals. Roulette-wheel selection is one of the traditional selection
strategies.

Linear-rank selector In linear-ranking selection the individuals are sorted
according to their fitness values. The rank N is assigned to the best individ-
ual and the rank 1 to the worst individual. The selection probability P (i) of
individual i is linearly assigned to the individuals according to their rank.

P (i) = 1
N

(
n− +

(
n+ − n−

) i− 1
N − 1

)
. (3.7)

Here n−

N is the probability of the worst individual to be selected and n+

N the
probability of the best individual to be selected. As the population size is held
constant, the condition n+ = 2 − n− and n− ≥ 0 must be fulfilled. Note that
all individuals get a different rank, respectively a different selection probability,
even if they have the same fitness value.[5]

Exponential-rank selector An alternative to the weak linear-rank selector
is to assign survival probabilities to the sorted individuals using an exponential
function:

P (i) = (c− 1) ci−1

cN − 1 , (3.8)

where c must within the range [0 . . . 1). A small value of c increases the prob-
ability of the best individual to be selected. If c is set to zero, the selection
probability of the best individual is set to one. The selection probability of all
other individuals is zero. A value near one equalizes the selection probabilities.
This selector sorts the population in descending order before calculating the
selection probabilities.

Boltzmann selector The selection probability of the Boltzmann selector is
defined as

P (i) = eb·fi

Z
, (3.9)

where b is a parameter which controls the selection intensity and Z is defined
as

Z =
n∑

i=1
efi . (3.10)

Positive values of b increases the selection probability of individuals with high
fitness values and negative values of b decreases it. If b is zero, the selection
probability of all individuals is set to 1

N .

Stochastic-universal selector Stochastic-universal selection [1] (SUS) is a
method for selecting individuals according to some given probability in a way
that minimizes the chance of fluctuations. It can be viewed as a type of roulette
game where we now have p equally spaced points which we spin. SUS uses a
single random value for selecting individuals by choosing them at equally spaced

11

3.2 Operation classes 3 BASE CLASSES

Figure 3.4: Stochastic-universal selection

intervals. The selection method was introduced by James Baker. [2] Figure 3.4
shows the function of the stochastic-universal selection, where n is the number
of individuals to select. Stochastic universal sampling ensures a selection of
offspring, which is closer to what is deserved than roulette wheel selection.[12]

3.2.2 Alterer

The problem encoding (representation) determines the bounds of the search
space, but the Alterers determine how the space can be traversed: Alterers
are responsible for the genetic diversity of the EvolutionStream. The two
Alterer types used in Jenetics are:

1. mutation and

2. recombination (e. g. crossover).

First we will have a look at the mutation — There are two distinct
roles mutation plays in the evolution process:

1. Exploring the search space: By making small moves, mutation allows
a population to explore the search space. This exploration is often slow
compared to crossover, but in problems where crossover is disruptive this
can be an important way to explore the landscape.

2. Maintaining diversity: Mutation prevents a population from correlat-
ing. Even if most of the search is being performed by crossover, mutation
can be vital to provide the diversity which crossover needs.

The mutation probability, P (m), is the parameter that must be optimized.
The optimal value of the mutation rate depends on the role mutation plays. If
mutation is the only source of exploration (if there is no crossover), the mutation
rate should be set to a value that ensures that a reasonable neighborhood of
solutions is explored.

The mutation probability, P (m), is defined as the probability that a specific
gene, over the whole population, is mutated. That means, the (average) number
of genes mutated by a mutator is

µ̂ = NP ·Ng · P (m) (3.11)

where Ng is the number of available genes of a genotype and NP the population
size (revere to equation 3.1 on page 7).

12

https://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
https://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)

3.2 Operation classes 3 BASE CLASSES

Mutator The mutator has to deal with the problem, that the genes are ar-
ranged in a 3D structure (see chapter 3.1.3). The mutator selects the gene
which will be mutated in three steps:

1. Select a genotype G[i] from the population with probability PG(m),

2. select a chromosome C[j] from the selected genotype G[i] with probability
PC(m) and

3. select a gene g[k] from the selected chromosome C[j] with probability
Pg(m).

The needed sub-selection probabilities are set to

PG(m) = PC(m) = Pg(m) = 3
√
P (m). (3.12)

Gaussian mutator The Gaussian mutator performs the mutation of number
genes. This mutator picks a new value based on a Gaussian distribution around
the current value of the gene. The variance of the new value (before clipping to
the allowed gene range) will be

σ̂2 =
(
gmax − gmin

4

)2
(3.13)

where gmin and gmax are the valid minimum and maximum values of the number
gene. The new value will be cropped to the gene’s boundaries.

Swap mutator The swap mutator changes the order of genes in a chromo-
some, with the hope of bringing related genes closer together, thereby facilitating
the production of building blocks. This mutation operator can also be used for
combinatorial problems, where no duplicated genes within a chromosome are
allowed, e. g. for the TSP.

The second alterer type is the recombination — An enhanced genetic
algorithm (EGA) combine elements of existing solutions in order to create a new
solution, with some of the properties of each parents. Recombination creates a
new chromosome by combining parts of two (or more) parent chromosomes. This
combination of chromosomes can be made by selecting one or more crossover
points, splitting these chromosomes on the selected points, and merge those
portions of different chromosomes to form new ones.

1 void recombine (f i n a l Population<G, C> pop) {
2 // S e l e c t the Genotypes f o r c r o s s ov e r .
3 f i n a l Random random = RandomRegistry . getRandom () ;
4 f i n a l int i 1 = random . next Int (pop . l ength ()) ;
5 f i n a l int i 2 = random . next Int (pop . l ength ()) ;
6 f i n a l Phenotype<G, C> pt1 = pop . get (i 1) ;
7 f i n a l Phenotype<G, C> pt2 = pop . get (2) ;
8 f i n a l Genotype<G> gt1 = pt1 . getGenotype () ;
9 f i n a l Genotype<G> gt2 = pt2 . getGenotype () ;

10

11 //Choosing the Chromosome f o r c r o s s ov e r .
12 f i n a l int chIndex =

13

3.2 Operation classes 3 BASE CLASSES

13 random . next Int (min (gt1 . l ength () , gt2 . l ength ())) ;
14 f i n a l MSeq<Chromosome<G>> c1 = gt1 . toSeq () . copy () ;
15 f i n a l MSeq<Chromosome<G>> c2 = gt2 . toSeq () . copy () ;
16 f i n a l MSeq<G> genes1 = c1 . get (chIndex) . toSeq () . copy () ;
17 f i n a l MSeq<G> genes2 = c2 . get (chIndex) . toSeq () . copy () ;
18

19 // Perform the c r o s s ov e r .
20 c r o s s ov e r (genes1 , genes2) ;
21 c1 . s e t (chIndex , c1 . get (chIndex) . newInstance (genes1 . toISeq ())) ;
22 c2 . s e t (chIndex , c2 . get (chIndex) . newInstance (genes2 . toISeq ())) ;
23

24 //Creat ing two new Phenotypes and r ep l a c e the o ld one .
25 pop . s e t (i1 , pt1 . newInstance (gt1 . newInstance (c1 . toISeq ()))) ;
26 pop . s e t (i2 , pt2 . newInstance (gt1 . newInstance (c2 . toISeq ()))) ;
27 }

Listing 7: Chromosome selection for recombination

Listing 7 on the preceding page shows how two chromosomes are selected for
recombination. It is done this way for preserving the given constraints and to
avoid the creation of invalid individuals.

Because of the possible different Chromosome length and/or Chromosome
constraints within a Genotype, only Chromosomes with the same Genotype
position are recombined (see listing 7 on the previous page).

The recombination probability, P (r), determines the probability that a given
individual (genotype) of a population is selected for recombination. The (mean)
number of changed individuals depend on the concrete implementation and can
be vary from P (r) ·NG to P (r) ·NG ·OR, where OR is the order of the recom-
bination, which is the number of individuals involved in the combine method.

Single-point crossover The single-point crossover changes two children chro-
mosomes by taking two chromosomes and cutting them at some, randomly cho-
sen, site. If we create a child and its complement we preserve the total number
of genes in the population, preventing any genetic drift. Single-point crossover
is the classic form of crossover. However, it produces very slow mixing compared
with multi-point crossover or uniform crossover. For problems where the site
position has some intrinsic meaning to the problem single-point crossover can
lead to smaller disruption than multiple-point or uniform crossover.

Figure 3.5 shows how the SinglePointCrossover class is performing the
crossover for different crossover points—in the given example for the chromo-
some indexes 0, 1, 3, 6 and 7.

Multi-point crossover If the MultiPointCrossover class is created with
one crossover point, it behaves exactly like the single-point crossover. The
following picture shows how the multi-point crossover works with two crossover
points, defined at index 1 and 4.

Figure 3.7 you can see how the crossover works for an odd number of
crossover points.

14

3.3 Engine classes 3 BASE CLASSES

Figure 3.5: Single-point crossover

Figure 3.6: 2-point crossover

Partially-matched crossover The partially-matched crossover guarantees
that all genes are found exactly once in each chromosome. No gene is dupli-
cated by this crossover strategy. The partially-matched crossover (PMX) can
be applied usefully in the TSP or other permutation problem encodings. Per-
mutation encoding is useful for all problems where the fitness only depends on
the ordering of the genes within the chromosome. This is the case in many com-
binatorial optimization problems. Other crossover operators for combinatorial
optimization are:

• order crossover

• cycle crossover

• edge recombination crossover

• edge assembly crossover

The PMX is similar to the two-point crossover. A crossing region is cho-
sen by selecting two crossing points (see figure 3.8 a)). After performing the
crossover we–normally–got two invalid chromosomes (figure 3.8 b)). Chromo-
some 1 contains the value 6 twice and misses the value 3. On the other side
chromosome 2 contains the value 3 twice and misses the value 6. We can observe
that this crossover is equivalent to the exchange of the values 3→6, 4→5 and
5→4. To repair the two chromosomes we have to apply this exchange outside
the crossing region (figure 3.8 b)). At the end figure 3.8 c) shows the repaired
chromosome.

3.3 Engine classes
The executing classes, which perform the actual evolution, are located in the
org.jenetics.engine package. The evolution stream (EvolutionStream) is

15

3.3 Engine classes 3 BASE CLASSES

Figure 3.7: 3-point crossover

Figure 3.8: Partially-matched crossover

the base metaphor for performing an GA. On the EvolutionStream you can
define the termination predicate and than collect the final EvolutionResult.
This decouples the static data structure from the executing evolution part. The
EvolutionStream is also very flexible, when it comes to collecting the final
result. The EvolutionResult class has several predefined collectors, but you
are free to create your own one, which can be seamlessly plugged into the existing
stream.

3.3.1 Fitness function

The fitness Function is also an important part when modeling an genetic algo-
rithm. It takes a Genotype as argument and returns, at least, a Comparable ob-
ject as result—the fitness value. This allows the evolution Engine, respectively
the selection operators, to select the offspring- and survivor Population. Some
selectors have stronger requirements to the fitness value than a Comparable,
but this constraints is checked by the Java type system at compile time.

Since the fitness Function is shared by all Phenotypes, calls to the fit-
ness Function has to be idempotent. A fitness Function is idempotent
if, whenever it is applied twice to any Genotype, it returns the same
fitness value as if it were applied once. In the simplest case, this is
achieved by Functions which doesn’t contain any global mutable state.

The following example shows the simplest possible fitness Function. This
Function simply returns the allele of a 1x1 float Genotype.

16

3.3 Engine classes 3 BASE CLASSES

1 public class Main {
2 stat ic Double i d e n t i t y (f i n a l Genotype<DoubleGene> gt) {
3 return gt . getGene () . g e tA l l e l e () ;
4 }
5

6 public stat ic void main (f i n a l St r ing [] a rgs) {
7 // Create f i t n e s s func t i on from method r e f e r e n c e .
8 Function<Genotype<DoubleGene>, Double>> f f 1 =
9 Main : : i d e n t i t y ;

10

11 // Create f i t n e s s func t i on from lambda expr e s s i on .
12 Function<Genotype<DoubleGene>, Double>> f f 2 = gt −>
13 gt . getGene () . g e tA l l e l e () ;
14 }
15 }

The first type parameter of the Function defines the kind of Genotype from
which the fitness value is calculated and the second type parameter determines
the return type, which must be, at least, a Comparable type.

3.3.2 Fitness scaler

The fitness value, calculated by the fitness Function, is treated as the raw-
fitness of an individual. The Jenetics library allows you to apply an additional
scaling function on the raw-fitness to form the fitness value which is used by the
selectors. This can be useful when using probability selectors (see chapter 3.2.1
on page 10), where the actual amount of the fitness value influences the selection
probability. In such cases, the fitness scaler gives you additional flexibility when
selecting offspring and survivors. In the default configuration the raw-fitness
is equal to the actual fitness value, that means, the used fitness scaler is the
identity function.

1 class Main {
2 public stat ic void main (f i n a l St r ing [] a rgs) {
3 Engine<DoubleGene , Double> engine = Engine . bu i l d e r (. . .)
4 . f i t n e s s S c a l e r (Math : : s q r t)
5 . bu i ld () ;
6 }
7 }

The given listing shows a fitness scaler which reduces the the raw-fitness to
its square root. This gives weaker individuals a greater changes being selected
and weakens the influence of super-individuals.

When using a fitness scaler you have to take care that your scaler doesn’t
destroy your fitness value. This can be the case when your fitness value
is negative and your fitness scaler squares the value. Trying to find the
minimum will not work in this configuration.

3.3.3 Engine

The evolution Engine controls how the evolution steps are executed. Once the
Engine is created, via a Builder class, it can’t be changed. It doesn’t contain
any mutable global state and can therefore safely used/called from different

17

3.3 Engine classes 3 BASE CLASSES

threads. This allows to create more than one EvolutionStreams from the
Engine and execute them in parallel.

1 public f i n a l class Engine<
2 G extends Gene<?, G>,
3 C extends Comparable<? super C>
4 >
5 implements Function<Evolut ionStart<G,C>, Evolut ionResult<G,C>>
6 {
7 // The evo lu t i on funct ion , performs one evo lu t i on step .
8 Evolut ionResult<G,C> evo lve (
9 Population<G,C> populat ion ,

10 long gene ra t i on
11) ;
12

13 // Evolut ion stream f o r " normal " evo lu t i on execut ion .
14 EvolutionStream<G,C> stream () ;
15

16 // Evolut ion i t e r a t o r f o r ex t e rna l evo lu t i on i t e r a t i o n .
17 I t e r a t o r <Evolut ionResult<G,C>> i t e r a t o r () ;
18 }

Listing 8: Engine class

Listing 8 shows the main methods of the Engine class. It is used for perform-
ing the actual evolution of a give population. One evolution step is executed by
calling the Engine.evolve method, which returns an EvolutionResult object.
This object contains the evolved Population plus additional information like
execution duration of the several evolution sub-steps and information about the
killed and as invalid marked individuals. With the stream method you create a
new EvolutionStream, which is used for controlling the evolution process—see
section 3.3.4 on the following page. Alternatively it is possible to iterate through
the evolution process in an imperative way (for whatever reasons this should be
necessary). Just create an Iterator of EvolutionResult object by calling the
iterator method.

As already shown in previous examples, the Engine can only be created via
its Builder class. Only the fitness Function and the Chromosomes, which rep-
resents the problem encoding, must be specified for creating an Engine instance.
For the rest of the parameters default values are specified. This are the Engine
parameters which can configured:

alterers A list of Alterers which are applied to the offspring Population,
in the defined order. The default value of this property is set to Single-
PointCrossover<>(0.2) followed by Mutator<>(0.15).

clock The java.time.Clock used for calculating the execution durations. A
Clock with nanosecond precision (System.nanoTime()) is used as default.

executor With this property it is possible to change the java.util.concur-
rent.Executor engine used for evaluating the evolution steps. This prop-
erty can be used to define an application wide Executor or for controlling
the number of execution threads. The default value is set to ForkJoin-
Pool.commonPool().

fitnessFunction This property defines the fitness Function used by the evo-
lution Engine. (See section 3.3.1 on page 16.)

18

3.3 Engine classes 3 BASE CLASSES

fitnessScaler This property defines the fitness scaler used by the evolution
Engine. The default value is set to the identity function. (See section 3.3.2
on page 17.)

genotypeFactory Defines the Genotype Factory used for creating new indi-
viduals. Since the Genotype is its own Factory, it is sufficient to create a
Genotype, which then serves as template.

genotypeValidator This property lets you override the default implementa-
tion of the Genotype.isValid method, which is useful if the Genotype
validity not only depends on valid property of the elements it consists of.

maximalPhenotypeAge Set the maximal allowed age of an individual (Pheno-
type). This prevents super individuals to live forever. The default value
is set to 70.

offspringFraction Through this property it is possible to define the fraction
of offspring (and survivors) for evaluating the next generation. The frac-
tion value must within the interval [0, 1]. The default value is set to 0.6.

offspringSelector This property defines the Selector used for selecting the
offspring Population. The default values is set to TournamentSelect-
or<>(3).

optimize With this property it is possible to define whether the fitness Function
should be maximized of minimized. By default, the fitness Function is
maximized.

phenotypeValidator This property lets you override the default implementa-
tion of the Phenotype.isValid method, which is useful if the Phenotype
validity not only depends on valid property of the elements it consists of.

populationSize Defines the number of individuals of a Population. The evo-
lution Engine keeps the number of individuals constant. That means,
the Population of the EvolutionResult always contains the number of
entries defined by this property. The default value is set to 50.

survivorsSelector This property defines the Selector used for selecting the
survivors Population. The default values is set to TournamentSelect-
or<>(3).

individualCreationRetries The evolution Engine tries to create only valid
individuals. If a newly created Genotype is not valid, the Engine creates
another one, till the created Genotype is valid. This parameter sets the
maximal number of retries before the Engine gives up and accept invalid
individuals. The default value is set to 10.

3.3.4 EvolutionStream

The EvolutionStream controls the execution of the evolution process and can
be seen as a kind of execution handle. This handle can be used to define the ter-
mination criteria and to collect the final evolution result. Since the Evolution-

19

3.3 Engine classes 3 BASE CLASSES

Stream extends the Java Stream interface, it integrates smoothly with the rest
of the Java Stream API.8

1 public interface EvolutionStream<
2 G extends Gene<?, G>,
3 C extends Comparable<? super C>
4 >
5 extends Stream<Evolut ionResult<G, C>>
6 {
7 public EvolutionStream<G, C>
8 l im i t (Predicate <? super Evolut ionResult<G, C>> proceed) ;
9 }

Listing 9: EvolutionStream class

Listing 9 shows the whole EvolutionStream interface. As it can be seen,
it only adds one additional method. But this additional limit method al-
lows to truncate the EvolutionStream based on a Predicate which takes an
EvolutionResult. Once the Predicate returns false, the evolution process is
stopped. Since the limit method returns an EvolutionStream, it is possible
to define more than one Predicate, which both must be fulfilled to continue
the evolution process.

1 Engine<DobuleGene , Double> engine = . . .
2 EvolutionStream<DoubleGene , Double> stream = engine . stream ()
3 . l im i t (p r ed i ca t e1)
4 . l im i t (p r ed i ca t e2)
5 . l im i t (100) ;

The EvolutionStream, created in the example above, will be truncated if
one of the two predicates is false or if the maximal allowed generations, of 100,
is reached. An EvolutionStream is usually created via the Engine.stream()
method. The immutable and stateless nature of the evolution Engine allows to
create more than one EvolutionStream with the same Engine instance.

The generations of the EvolutionStream are evolved serially. Calls of the
EvolutionStream methods (e. g. limit, peek, ...) are executed in the
thread context of the created Stream. In a typical setup, no additional
synchronization and/or locking is needed.

In cases where you appreciate the usage of the EvolutionStream but need a
different Engine implementation, you can use the EvolutionStream.of factory
method for creating an new EvolutionStream.

1 stat ic <G extends Gene<?, G>, C extends Comparable<? super C>>
2 EvolutionStream<G, C> of (
3 Suppl ie r<Evolut ionStart<G, C>> sta r t ,
4 Function<? super Evolut ionStart<G, C>, Evolut ionResult<G, C>> f
5) ;

This factory method takes a start value, of type EvolutionStart, and an evo-
lution Function. The evolution Function takes the start value and returns an
EvolutionResult object. To make the runtime behavior more predictable, the
start value is fetched/created lazily at the evolution start time.

8It is recommended to make yourself familiar with the Java Stream API.
A good introduction can be found here: http://winterbe.com/posts/2014/07/31/
java8-stream-tutorial-examples/

20

http://winterbe.com/posts/2014/07/31/java8-stream-tutorial-examples/
http://winterbe.com/posts/2014/07/31/java8-stream-tutorial-examples/

3.3 Engine classes 3 BASE CLASSES

1 f i n a l Suppl ie r<Evolut ionStart<DoubleGene , Double>> s t a r t = . . .
2 f i n a l EvolutionStream<DoubleGene , Double> stream =
3 EvolutionStream . o f (s t a r t , new MySpecialEngine ()) ;

3.3.5 EvolutionResult

The EvolutionResult collects the result data of an evolution step into an im-
mutable value class. This class is the type of the stream elements of the Evolu-
tionStream, as described in section 3.3.4 on page 19.

1 public f i n a l class Evolut ionResult<
2 G extends Gene<?, G>,
3 C extends Comparable<? super C>
4 >
5 implements Comparable<Evolut ionResult<G, C>>
6 {
7 Population<G,C> getPopulat ion () ;
8 long getGenerat ion () ;
9 }

Listing 10: EvolutionResult class

Listing 3.3.5 shows the two most important properties, the population and
the generation the result belongs to. This are also the two properties needed
for the next evolution step. The generation is, of course, incremented by
one. To make collecting the EvolutionResult object easier, it also implements
the Comparable interface. Two EvolutionResults are compared by its best
Phenotype.

The EvolutionResult classes has three predefined factory methods, which
will return Collectors usable for the EvolutionStream:

toBestEvolutionResult() Collects the best EvolutionResult of an Evolution-
Stream according to the defined optimization strategy.

toBestPhenotype() This collector can be used if you are only interested in the
best Phenotype.

toBestGenotype() Use this collector if you only need the best Genotype of the
EvolutionStream.

The following code snippets shows how to use the different EvolutionStream
collectors.

1 // Co l l e c t i n g the best Evo lut ionResu l t o f the EvolutionStream .
2 Evolut ionResult<DoubleGene , Double> r e s u l t = stream
3 . c o l l e c t (Evo lut ionResu l t . toBestEvo lut ionResu l t ()) ;
4

5 // Co l l e c t i n g the best Phenotype o f the EvolutionStream .
6 Phenotype<DoubleGene , Double> r e s u l t = stream
7 . c o l l e c t (Evo lut ionResu l t . toBestPhenotype ()) ;
8

9 // Co l l e c t i n g the best Genotype o f the EvolutionStream .
10 Genotype<DoubleGene> r e s u l t = stream
11 . c o l l e c t (Evo lut ionResu l t . toBestGenotype ()) ;

21

3.3 Engine classes 3 BASE CLASSES

3.3.6 EvolutionStatistics

The EvolutionStatistics class allows you to gather additional statistical in-
formation from the EvolutionStream. This is especially useful during the devel-
opment phase of the application, when you have to find the right parametriza-
tion of the evolution Engine. Besides other informations, the Evolution-
Statistics contains (statistical) information about the fitness, invalid and
killed Phenotypes and runtime information of the different evolution steps.
Since the EvolutionStatistics class implements the Consumer<Evolution-
Result<?, C>�> interface, it can be easily plugged into the EvolutionStream,
adding it with the peek method of the stream.

1 Engine<DoubleGene , Double> engine = . . .
2 Evo l u t i o nS t a t i s t i c s <?, Double> s t a t i s t i c s =
3 Evo l u t i o nS t a t i s t i c s . ofNumber () ;
4 eng ine . stream ()
5 . l im i t (100)
6 . peek (s t a t i s t i c s)
7 . c o l l e c t (toBestGenotype ()) ;

Listing 11: EvolutionStatistics usage

Listing 11 shows how to add the the EvolutionStatistics to the Evolution-
Stream. Once the algorithm tuning is finished, it can be removed in the pro-
duction environment.

There are two different specializations of the EvolutionStatistics object
available. The first is the general one, which will be working for every kind
of Genes and fitness types. It can be created via the EvolutionStatistics.-
ofComparable() method. The second one collects additional statistical data for
numeric fitness values. This can be created with the EvolutionStatistics.-
ofNumber() method.

1 +---+
2 | Time statistics |
3 +---+
4 | Selection: sum =0.046538278000 s; mean =0.003878189833 s |
5 | Altering: sum =0.086155457000 s; mean =0.007179621417 s |
6 | Fitness calculation: sum =0.022901606000 s; mean =0.001908467167 s |
7 | Overall execution: sum =0.147298067000 s; mean =0.012274838917 s |
8 +---+
9 | Evolution statistics |

10 +---+
11 | Generations: 12 |
12 | Altered: sum =7 ,331; mean =610.916666667 |
13 | Killed: sum=0; mean =0.000000000 |
14 | Invalids: sum=0; mean =0.000000000 |
15 +---+
16 | Population statistics |
17 +---+
18 | Age: max =11; mean =1.951000; var =5.545190 |
19 | Fitness: |
20 | min = 0.000000000000 |
21 | max = 481.748227114537 |
22 | mean = 384.430345078660 |
23 | var = 13006.132537301528 |
24 +---+

A typical output of an number EvolutionStatistics object will look like the
example above.

The EvolutionStatistics object is a simple for inspecting the Evolution-
Stream after it is finished. It doesn’t give you a live view of the current evolution
process, which can be necessary for long running streams. In such cases you
have to maintain/update the statistics yourself.

22

4 NUTS AND BOLTS

1 public class TSM {
2 // The l o c a t i o n s to v i s i t .
3 stat ic f i n a l ISeq<Point> POINTS = ISeq . o f (. . .) ;
4

5 // The permutation codec .
6 stat ic f i n a l Codec<ISeq<Point >, EnumGene<Point>>
7 CODEC = codecs . ofPermutation (POINTS) ;
8

9 // The f i t n e s s func t i on (in the problem domain) .
10 stat ic double d i s t (f i n a l ISeq<Point> p) { . . . }
11

12 // The evo lu t i on eng ine .
13 stat ic f i n a l Engine<EnumGene<Point >, Double> ENGINE = Engine
14 . bu i l d e r (TSM: : d i s t , CODEC)
15 . opt imize (Optimize .MINIMUM)
16 . bu i ld () ;
17

18 // Best phenotype found so f a r .
19 stat ic Phenotype<EnumGene<Point >, Double> best = null ;
20

21 // You w i l l be informed on new r e s u l t s . This a l l ows to
22 // r ea c t on new best phenotypes , e . g . l og i t .
23 private stat ic void update (
24 f i n a l Evolut ionResult<EnumGene<Point >, Double> r e s u l t
25) {
26 i f (bes t == null | |
27 best . compareTo (r e s u l t . getBestPhenotype ()) < 0)
28 {
29 best = r e s u l t . getBestPhenotype () ;
30 System . out . p r i n t (r e s u l t . getGenerat ion () + " : ") ;
31 System . out . p r i n t l n ("Found best phenotype : " + best) ;
32 }
33 }
34

35 // Find the s o l u t i o n .
36 public stat ic void main (f i n a l St r ing [] a rgs) {
37 f i n a l ISeq<Point> r e s u l t = CODEC. decode (
38 ENGINE. stream ()
39 . peek (TSM: : update)
40 . l im i t (10)
41 . c o l l e c t (Evo lut ionResu l t . toBestGenotype ())
42) ;
43 System . out . p r i n t l n (r e s u l t) ;
44 }
45 }

Listing 12: Live evolution statistics

Listing 12 shows how to implement a manual statistics gathering. The up-
date method is called whenever a new EvolutionResult is has been calcu-
lated. If a new best Phenotype is available, it is stored and logged. With the
TSM::update method, which is called on every finished generation, you have a
live view on the evolution progress.

4 Nuts and bolts
4.1 Concurrency
The Jenetics library parallelizes independent task whenever possible. Especially
the evaluation of the fitness function is done concurrently. That means that the

23

4.2 Randomness 4 NUTS AND BOLTS

fitness function must be thread safe, because it is shared by all phenotypes of a
population. The easiest way for achieving thread safety is to make the fitness
function immutable and re-entrant. The used Executor can be defined when
building the evolution Engine object.

1 import java . u t i l . concurrent . Executor ;
2 import java . u t i l . concurrent . Executors ;
3

4 public class Main {
5 private stat ic Double eva l (f i n a l Genotype<DoubleGene> gt) {
6 // c a l c u l a t e and return f i t n e s s
7 }
8

9 public stat ic void main (f i n a l St r ing [] a rgs) {
10 // Creat ing an f i x ed s i z e ExecutorServ i ce
11 f i n a l ExecutorServ i ce executor = Executors
12 . newFixedThreadPool (10)
13 f i n a l Factory<Genotype<DoubleGene>> g t f = . . .
14 f i n a l Engine<DoubleGene , Double> engine = Engine
15 . bu i l d e r (Main : : eval , g t f)
16 // Using 10 threads f o r evo lv ing .
17 . executor (executor)
18 . bu i ld ()
19 . . .
20 }
21 }

If no Executor is given, Jenetics uses a common ForkJoinPool9 for con-
currency.

4.2 Randomness
In general, GAs heavily depends on pseudo random number generators (PRNG)
for creating new individuals and for the selection- and mutation-algorithms.
Jenetics uses the Java Random object, respectively sub-types from it, for gen-
erating random numbers. To make the random engine pluggable, the Random
object is always fetched from the RandomRegistry. This makes it possible to
change the implementation of the random engine without changing the client
code. The central RandomRegistry also allows to easily change Random engine
even for specific parts of the code.

The following example shows how to change and restore the Random object.
When opening the with scope, changes to the RandomRegistry are only visible
within this scope. Once the with scope is left, the original Random object is
restored.

1 List<Genotype<DoubleGene>> genotypes =
2 RandomRegistry . with (new Random(123) , r −> {
3 Genotype . o f (DoubleChromosome . o f (0 . 0 , 100 .0 , 10))
4 . i n s t an c e s ()
5 . l im i t (100)
6 . c o l l e c t (Co l l e c t o r s . t oL i s t ())
7 }) ;

With the previous listing, a random, but reproducible, list of genotypes is
created. This might be useful while testing your application or when you want
to evaluate the EvolutionStream several times with the same initial population.

9https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.
html

24

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

4.2 Randomness 4 NUTS AND BOLTS

1 Engine<DoubleGene , Double> engine = . . . ;
2 // Create a new evo lu t i on stream with the g iven
3 // i n i t i a l genotypes .
4 Phenotype<DoubleGene , Double> best = engine . stream (genotypes)
5 . l im i t (10)
6 . c o l l e c t (Evo lut ionResu l t . toBestPhenotype ()) ;

The example above uses the generated genotypes for creating the Evolution-
Stream. Each created stream uses the same starting population, but will, most
likely, create a different result. This is because the stream evaluation is still
non-deterministic.

Setting the PRNG to a Random object with a defined seed has the ef-
fect, that every evolution stream will produce the same result—in an single
threaded environment.

The parallel nature of the GA implementation requires the creation of streams
ti,j of random numbers which are statistically independent, where the streams
are numbered with j = 1, 2, 3, ..., p, p denotes the number of processes. We
expect statistical independence between the streams as well. The used PRNG
should enable the GA to play fair, which means that the outcome of the GA
is strictly independent from the underlying hardware and the number of par-
allel processes or threads. This is essential for reproducing results in parallel
environments where the number of parallel tasks may vary from run to run.

The Fair Play property of a PRNG guarantees that the quality of the genetic
algorithm (evolution stream) does not depend on the degree of paralleliza-
tion.

When the Random engine is used in an multi-threaded environment, there
must be a way to parallelize the sequential PRNG. Usually this is done by
taking the elements of the sequence of pseudo-random numbers and distribute
them among the threads. There are essentially four different parallelizations
techniques used in practice: Random seeding, Parameterization, Block splitting
and Leapfrogging.

Random seeding Every thread uses the same kind of PRNG but with a
different seed. This is the default strategy used by the Jenetics library. The
RandomRegistry is initialized with the ThreadLocalRandom class from the ja-
va.util.concurrent package. Random seeding works well for the most prob-
lems but without theoretical foundation.10 If you assume that this strategy is
responsible for some non-reproducible results, consider using the LCG64Shift-
Random PRNG instead, which uses block splitting as parallelization strategy.

Parameterization All threads uses the same kind of PRNG but with different
parameters. This requires the PRNG to be parameterizable, which is not the

10This is also expressed by Donald Knuth’s advice: »Random number generators should
not be chosen at random.«

25

4.2 Randomness 4 NUTS AND BOLTS

case for the Random object of the JDK. You can use the LCG64ShiftRandom
class if you want to use this strategy. The theoretical foundation for these
method is weak. In a massive parallel environment you will need a reliable set
of parameters for every random stream, which are not trivial to find.

Block splitting With this method each thread will be assigned a non-over-
lapping contiguous block of random numbers, which should be enough for the
whole runtime of the process. If the number of threads is not known in ad-
vance, the length of each block should be chosen much larger then the maximal
expected number of threads. This strategy is used when using the LCG64-
ShiftRandom.ThreadLocal class. This class assigns every thread a block of
256 ≈ 7, 2 · 1016 random numbers. After 128 threads, the blocks are recycled,
but with changed seed.

Figure 4.1: Block splitting

Leapfrog With the leapfrog method each thread t ∈ [0, P) only consumes the
P th random number and jump ahead in the random sequence by the number of
threads, P . This method requires the ability to jump very quickly ahead in the
sequence of random numbers by a given amount. Figure 4.2 graphically shows
the concept of the leapfrog method.

Figure 4.2: Leapfrogging

LCG64ShiftRandom The LCG64ShiftRandom class is a port of the trng::-
lcg64_shift PRNG class of the TRNG11 library, implemented in C++.[4] It

11http://numbercrunch.de/trng/

26

http://numbercrunch.de/trng/
http://numbercrunch.de/trng/

4.3 Serialization 4 NUTS AND BOLTS

implements additional methods, which allows to implement the block splitting—
and also the leapfrog—method.

1 public class LCG64ShiftRandom extends Random {
2 public void s p l i t (f i n a l int p , f i n a l int s) ;
3 public void jump(f i n a l long s tep) ;
4 public void jump2 (f i n a l int s) ;
5 . . .
6 }

Listing 13: LCG64ShiftRandom class

Listing 13 shows the interface used for implementing the block splitting and
leapfrog parallelizations technique. This methods have the following meaning:

split Changes the internal state of the PRNG in a way that future calls to
nextLong() will generated the sth sub-stream of pth sub-streams. s must
be within the range of [0, p− 1). This method is used for parallelization
via leapfrogging.

jump Changes the internal state of the PRNG in such a way that the engine
jumpss steps ahead. This method is used for parallelization via block
splitting.

jump2 Changes the internal state of the PRNG in such a way that the engine
jumps 2s steps ahead. This method is used for parallelization via block
splitting.

Runtime performance Table 4.1 shows the random number generation speed
for the different PRNG implementations.12

int/s long/s float/s double/s
Random 87 · 106 43 · 106 86 · 106 42 · 106

ThreadLocalRandom 255 · 106 253 · 106 208 · 106 208 · 106

LCG64ShiftRandom 237 · 106 241 · 106 176 · 106 178 · 106

Table 4.1: Performance of various PRNG implementations.

The default PRNG used by the Jenetics has the best runtime performance
behavior (for generating int values).

4.3 Serialization
Jenetics supports serialization for a number of classes, most of them are located
in the org.jenetics package. Only the concrete implementations of the Gene
and the Chromosome interfaces implements the Serializable interface. This
gives a greater flexibility when implementing own Genes and Chromosomes.

12Measured on a Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz with Java(TM) SE
Runtime Environment (build 1.8.0_102-b14)—Java HotSpot(TM) 64-Bit Server VM (build
25.102-b14, mixed mode)—, using the JHM micro-benchmark library.

27

4.3 Serialization 4 NUTS AND BOLTS

• BitGene

• BitChromosome

• CharacterGene

• CharacterChromosome

• IntegerGene

• IntegerChromosome

• LongGene

• LongChomosome

• DoubleGene

• DoubleChromosome

• EnumGene

• PermutationChromosome

• Genotype

• Phenotype

• Population

With the serialization mechanism you can write a population to disk and load
it into an new EvolutionStream at a later time. It can also be used to transfer
populations to evolution engines, running on different hosts, over a network link.
The IO class, located in the org.jenetics.util package, supports native Java
serialization and JAXB XML serialization.

1 // Creat ing r e s u l t populat ion .
2 Evolut ionResult<DoubleGene , Double> r e s u l t = stream
3 . l im i t (100)
4 . c o l l e c t (toBestEvo lut ionResu l t ()) ;
5

6 // Writing the populat ion to d i sk .
7 f i n a l F i l e f i l e = new F i l e (" populat ion . xml ") ;
8 IO . jaxb . wr i t e (r e s u l t . getPopulat ion () , f i l e) ;
9

10 // Reading the populat ion from di sk .
11 Population<DoubleGene , Double> populat ion =
12 (Population<DoubleGene , Double>)IO . jaxb . read (f i l e) ;
13 EvolutionStream<DoubleGene , Double> stream = Engine
14 . bu i ld (f f , g t f)
15 . stream (populat ion , 1) ;

The following listing shows the XML serialization of a Population which
consists of Genotypes as shown in figure 3.2 on page 6; only the first Phenotype
is shown.

1 <?xml version="1.0" encoding="UTF -8" standalone="yes"?>
2 <org.jenetics.Population size="5">
3 <phenotype
4 xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"
5 xsi:type="org.jenetics.Phenotype" generation="294"
6 >
7 <genotype length="5" ngenes="100">
8 <chromosome
9 xsi:type="org.jenetics.DoubleChromosome"

10 length="20" min="0.0" max="1.0"
11 >
12 <allele >0.27251556008507416 </allele >
13 <allele >0.003140816229067145 </allele >
14 <allele >0.43947528327497376 </allele >
15 <allele >0.10654807463069327 </allele >
16 <allele >0.19696530915810317 </allele >
17 <allele >0.7450003838065538 </allele >
18 <allele >0.5594416969271359 </allele >
19 <allele >0.02823782430152355 </allele >
20 <allele >0.5741102315010789 </allele >
21 <allele >0.4533651041367144 </allele >
22 <allele >0.811148141800367 </allele >
23 <allele >0.5710456351848858 </allele >

28

4.3 Serialization 4 NUTS AND BOLTS

24 <allele >0.30166768355230955 </allele >
25 <allele >0.5455492865240272 </allele >
26 <allele >0.21068427527733102 </allele >
27 <allele >0.5265067943902246 </allele >
28 <allele >0.273549098065591 </allele >
29 <allele >0.2648197379297126 </allele >
30 <allele >0.8732775776362911 </allele >
31 <allele >0.9498003919007005 </allele >
32 </chromosome >
33 ...
34 </genotype >
35 <fitness
36 xmlns:xs="http://www.w3.org /2001/ XMLSchema"
37 xsi:type="xs:double"
38 >234.23443 </fitness >
39 <raw -fitness
40 xmlns:xs="http://www.w3.org /2001/ XMLSchema"
41 xsi:type="xs:double"
42 >34.2498 </raw -fitness >
43 </phenotype >
44 ...
45 </org.jenetics.Population >

When serializing a whole population the fitness function and fitness scaler
are not part of the serialized XML file. If an EvolutionStream is initialized
with a previously serialized Population, the Engine’s current fitness function
and fitness scaler are used for re-calculating the fitness values.

The IO class can also be used for serializing own JAXB annotated classes.
Listing 14 shows how an user-defined JAXB class can be marshaled with the IO
helper class.

1 @XmlRootElement (name = " data−c l a s s ")
2 @XmlType(name = " DataClass ")
3 @XmlAccessorType (XmlAccessType .FIELD)
4 public class DataClass {
5 @XmlAttribute public St r ing name ;
6 @XmlValue public St r ing value ;
7

8 public DataClass (f i n a l St r ing name , f i n a l St r ing value) {
9 this . name = name ;

10 this . va lue = value ;
11 }
12

13 // Defau l t con s t ruc to r needed by JAXB.
14 public DataClass () {
15 }
16

17 public stat ic void main (f i n a l St r ing [] a rgs) throws Exception {
18 // Reg i s t e r i ng the c l a s s be f o r e s e r i a l i z a t i o n .
19 IO .JAXB. r e g i s t e r (DataClass . class) ;
20

21 f i n a l DataClass data =
22 new DataClass (" some name" , " some value ") ;
23 IO . jaxb . wr i t e (data , System . out) ;
24 }
25 }

Listing 14: DataClass JAXB serialization

The output of the marshaled DataClass looks like expected.
1 <?xml version="1.0" encoding="UTF -8" standalone="yes"?>
2 <data -class name="some name">some value</data -class>

29

4.4 Utility classes 4 NUTS AND BOLTS

4.4 Utility classes
The org.jenetics.util and the org.jenetics.stat package of the library
contains utility and helper classes which are essential for the implementation of
the GA.

org.jenetics.util.Seq Most notable are the Seq interfaces and its imple-
mentation. They are used, among others, in the Chromosome and Genotype
classes and holds the Genes and Chromosomes, respectively. The Seq interface
itself represents a fixed-sized, ordered sequence of elements. It is an abstraction
over the Java build-in array-type, but much safer to use for generic elements,
because there are no casts needed when using nested generic types.

Figure 4.3: Seq class diagram

Figure 4.3 shows the Seq class diagram with their most important methods.
The interfaces MSeq and ISeq are mutable, respectively immutable specializa-
tions of the basis interface. Creating instances of the Seq interfaces is possible
via the static factory methods of the interfaces.

1 // Create " d i f f e r e n t " sequences .
2 f i n a l Seq<Integer> a1 = Seq . o f (1 , 2 , 3) ;
3 f i n a l MSeq<Integer> a2 = MSeq . o f (1 , 2 , 3) ;
4 f i n a l ISeq<Integer> a3 = MSeq . o f (1 , 2 , 3) . toISeq () ;
5 f i n a l MSeq<Integer> a4 = a3 . copy () ;
6

7 // The ’ equa l s ’ method performs element−wise comparison .
8 a s s e r t (a1 . equa l s (a2) && a1 != a2) ;
9 a s s e r t (a2 . equa l s (a3) && a2 != a3) ;

10 a s s e r t (a3 . equa l s (a4) && a3 != a4) ;

How to create instances of the three Seq types is shown in the listing above.
The Seq classes also allows a more functional programming style. For a full
method description refer to the Javadoc.

org.jenetics.stat This package contains classes for calculating statistical
moments. They are designed to work smoothly with the Java Stream API
and are divided into mutable (number) consumers and immutable value classes,
which holds the statistical moments. The additional classes calculate the

30

http://jenetics.sourceforge.net/javadoc/index.html

5 EXTENDING JENETICS

• minimum,

• maximum,

• sum,

• mean,

• variance,

• skewness and

• kurtosis value.

Numeric type Consumer class Value class
int IntMomentStatistics IntMoments
long LongMomentStatistics LongMoments
double DoubleMomentStatistics DoubleMoments

Table 4.2: Statistics classes

Table 4.2 contains the available statistical moments for the different numeric
types. The following code snippet shows an example on how to collect double
statistics from an given DoubleGene stream.

1 // Co l l e c t i n g in to an s t a t i s t i c s ob j e c t .
2 DoubleChromosome chromosome = . . .
3 DoubleMomentStatist ics s t a t i s t i c s = chromosome . stream ()
4 . c o l l e c t (DoubleMomentStatist ics
5 . toDoubleMomentStat ist ics (v −> v . doubleValue ())) ;
6

7 // Co l l e c t i n g in to an moments ob j e c t .
8 DoubleMoments moments = chromosome . stream ()
9 . c o l l e c t (DoubleMoments . toDoubleMoments (v −> v . doubleValue ())) ;

5 Extending Jenetics
The Jenetics library was designed to give you a great flexibility in transforming
your problem into a structure that can be solved by an GA. It also comes with
different implementations for the base data-types (genes and chromosomes) and
operators (alterers and selectors). If it is still some functionality missing, this
section describes how you can extend the existing classes. Most of the extensible
classes are defined by an interface and have an abstract implementation which
makes it easier to extend it.

5.1 Genes
Genes are the starting point in the class hierarchy. They hold the actual informa-
tion, the alleles, of the problem domain. Beside the classical bit-gene, Jenetics
comes with gene implementations for numbers (double-, int- and long values),
characters and enumeration types.

For implementing your own gene type you have to implement the Gene in-
terface with three methods: (1) the getAllele() method which will return the
wrapped data, (2) the newInstancemethod for creating new, random instances
of the gene—must be of the same type and have the same constraint—and (3)
the isValid() method which checks if the gene fulfill the expected constraints.
The gene constraint might be violated after mutation and/or recombination. If
you want to implement a new number-gene, e. g. a gene which holds complex

31

5.1 Genes 5 EXTENDING JENETICS

values, you may want extend it from the abstract NumericGene class. Every
Gene extends the Serializable interface. For normal genes there is no more
work to do for using the Java serialization mechanism.

The custom Genes and Chromosomes implementations must use the Random
engine available via the RandomRegistry.getRandom method when im-
plementing their factory methods. Otherwise it is not possible to seam-
lessly change the Random engine by using the RandomRegistry.setRandom
method.

If you want to support your own allele type, but want to avoid the ef-
fort of implementing the Gene interface, you can alternatively use the Any-
Gene class. It can be created with AnyGene.of(Supplier, Predicate). The
given Supplier is responsible for creating new random alleles, similar to the
newInstance method in the Gene interface. Additional validity checks are per-
formed by the given Predicate.

1 class LastMonday {
2 // Creates new random ’ LocalDate ’ ob j e c t s .
3 private stat ic LocalDate nextMonday () {
4 f i n a l Random random = RandomRegistry . getRandom () ;
5 LocalDate
6 . o f (2015 , 1 , 5)
7 . plusWeeks (random . next Int (1000)) ;
8 }
9

10 // Do some add i t i o na l v a l i d i t y check .
11 private stat ic boolean i sVa l i d (f i n a l LocalDate date) { . . . }
12

13 // Create a new gene from the random ’ Supp l i e r ’ and
14 // va l i d a t i o n ’ Pred i ca te ’ .
15 private f i n a l AnyGene<LocalDate> gene = AnyGene
16 . o f (LastMonday : : nextMonday , LastMonday : : i sVa l i d) ;
17 }

Listing 15: AnyGene example

Example listing 15 shows the (almost) minimal setup for creating user de-
fined Gene allele types. By convention, the Random engine, used for creating the
new LocalDate objects, must be requested from the RandomRegistry. With
the optional validation function, isValid, it is possible to reject Genes whose
alleles doesn’t conform some criteria.

The simple usage of the AnyGene has also its downsides. Since the AnyGene
instances are created from function objects, serialization is not supported by
the AnyGene class. It is also not possible to use some Alterer implementations
with the AnyGene, like:

• GaussianMutator,

• MeanAlterer and

• PartiallyMatchedCrossover

32

5.2 Chromosomes 5 EXTENDING JENETICS

5.2 Chromosomes
A new gene type normally needs a corresponding chromosome implementation.
The most important part of a chromosome is the factory method newInstance,
which lets the evolution Engine create a new Chromosome instance from a se-
quence of Genes. This method is used by the Alterers when creating new,
combined Chromosomes. It is allowed, that the newly created chromosome has
a different length than the original one. The other methods should be self-
explanatory. The chromosome has the same serialization mechanism as the
gene. For the minimal case it can extends the Serializable interface.

Corresponding to the AnyGene, it is possible to create chromosomes with
arbitrary allele types with the AnyChromosome.

1 public class LastMonday {
2 // The used problem Codec .
3 private stat ic f i n a l Codec<LocalDate , AnyGene<LocalDate>>
4 CODEC = Codec . o f (
5 Genotype . o f (AnyChromosome . o f (LastMonday : : nextMonday)) ,
6 gt −> gt . getGene () . g e tA l l e l e ()
7) ;
8

9 // Creates new random ’ LocalDate ’ ob j e c t s .
10 private stat ic LocalDate nextMonday () {
11 f i n a l Random random = RandomRegistry . getRandom () ;
12 LocalDate
13 . o f (2015 , 1 , 5)
14 . plusWeeks (random . next Int (1000)) ;
15 }
16

17 // The f i t n e s s func t i on : f i nd a monday at the end o f the month .
18 private stat ic int f i t n e s s (f i n a l LocalDate date) {
19 return date . getDayOfMonth () ;
20 }
21

22 public stat ic void main (f i n a l St r ing [] a rgs) {
23 f i n a l Engine<AnyGene<LocalDate >, Integer> engine = Engine
24 . bu i l d e r (LastMonday : : f i t n e s s , CODEC)
25 . o f f s p r i n g S e l e c t o r (new RouletteWhee lSe lector <>())
26 . bu i ld () ;
27

28 f i n a l Phenotype<AnyGene<LocalDate >, Integer> best =
29 eng ine . stream ()
30 . l im i t (50)
31 . c o l l e c t (Evo lut ionResu l t . toBestPhenotype ()) ;
32

33 System . out . p r i n t l n (bes t) ;
34 }
35 }

Listing 16: AnyChromosome example

Listing 16 shows a full usage example of the AnyGene and AnyChromosome
class. The example tries to find a Monday with a maximal day of month.
An interesting detail is, that an Codec13 definition is used for creating new
Genotypes and for converting them back to LocalDate alleles.

The convenient usage of the AnyChromosome has to be payed by the same
restriction as for the AnyGene: no serialization support for the chromosome and
not usable for all Alterer implementations.

13See section 6.2 on page 43 for a more detailed Codec description.

33

5.3 Selectors 5 EXTENDING JENETICS

5.3 Selectors
If you want to implement your own selection strategy you only have to imple-
ment the Selector interface with the select method.

1 @Funct iona l Inte r face
2 public interface Se l e c to r <
3 G extends Gene<?, G>,
4 C extends Comparable<? super C>
5 > {
6 public Population<G, C> s e l e c t (
7 Population<G, C> populat ion ,
8 int count ,
9 Optimize opt

10) ;
11 }

Listing 17: Selector interface

The first parameter is the original population from which the sub-population
is selected. The second parameter, count, is the number of individuals of the
returned sub-population. Depending on the selection algorithm, it is possible
that the sub-population contains more elements than the original one. The
last parameter, opt, determines the optimization strategy which must be used
by the selector. This is exactly the point where it is decided whether the GA
minimizes or maximizes the fitness function.

Before implementing a selector from scratch, consider to extend your selector
from the ProbabilitySelector (or any other available Selector implementa-
tion). It is worth the effort to try to express your selection strategy in terms
of selection property P (i). Another way for re-using existing Selector imple-
mentation is by composition.

1 public class E l i t i s t S e l e c t o r <
2 G extends Gene<?, G>,
3 C extends Comparable<? super C>
4 >
5 implements Se l e c to r <G, C>
6 {
7 private f i n a l Truncat ionSe lec tor<G, C>
8 _e l i t e = new Truncat ionSe lec tor <>() ;
9

10 private f i n a l TournamentSelector<G, C>
11 _rest = new TournamentSelector <>(3) ;
12

13 public E l i t i s t S e l e c t o r () {
14 }
15

16 @Override
17 public Population<G, C> s e l e c t (
18 f i n a l Population<G, C> populat ion ,
19 f i n a l int count ,
20 f i n a l Optimize opt
21) {
22 return populat ion . isEmpty () | | count <= 0
23 ? new Population <>(0)
24 : append (
25 _e l i t e . s e l e c t (populat ion , 1 , opt) ,
26 _rest . s e l e c t (populat ion , max(0 , count − 1) , opt)) ;
27 }
28

29 private Population<G, C> append (

34

5.4 Alterers 5 EXTENDING JENETICS

30 f i n a l Population<G, C> p1 ,
31 f i n a l Population<G, C> p2
32) {
33 p1 . addAll (p2) ;
34 return p1 ;
35 }
36 }

Listing 18: Elitist selector

Listing 18 on the preceding page shows how an elitist selector could be im-
plemented by using the existing Truncation- and TournamentSelector. With
elitist selection, the quality of the best solution in each generation monotoni-
cally increases over time.[3] Although this is not necessary, since the evolution
Engine/Stream doesn’t throw away the best solution found during the evolution
process.

5.4 Alterers
For implementing a new alterer class it is necessary to implement the Alterer
interface. You might do this if your new Gene type needs a special kind of
alterer not available in the Jenetics project.

1 @Funct iona l Inte r face
2 public interface Altere r<
3 G extends Gene<?, G>,
4 C extends Comparable<? super C>
5 > {
6 public int a l t e r (
7 Population<G, C> populat ion ,
8 long gene ra t i on
9) ;

10 }

Listing 19: Alterer interface

The first parameter of the altermethod is the Population which has to be
altered. Since the the Population class is mutable, the altering is performed in
place. The second parameter is the generation of the newly created individuals
and the return value is the number of genes that has been altered.

To maximize the range of application of an Alterer, it is recommended
that they can handle Genotypes and Chromosomes with variable length.

5.5 Statistics
During the developing phase of an application which uses the Jenetics library,
additional statistical data about the evolution process is crucial. Such data can
help to optimize the parametrization of the evolution Engine. A good starting
point is to use the EvolutionStatistics class in the org.jenetics.engine
package (see listing 11 on page 22). If the data in the EvolutionStatistics
class doesn’t fit your needs, you simply have to write your own statistics class.
It is not possible to derive from the existing EvolutionStatistics class. This

35

5.6 Engine 5 EXTENDING JENETICS

is not a real restriction, since you still can use the class by delegation. Just
implement the Java Consumer<EvolutionResult<G, C>> interface.

5.6 Engine
The evolution Engine itself can’t be extended, but it is still possible to create an
EvolutionStream without using the Engine class.14 Because the Evolution-
Stream has no direct dependency to the Engine, it is possible to use an different,
special evolution Function.

1 public f i n a l class Spec ia lEng ine {
2 // The Genotype f a c t o r y .
3 private stat ic f i n a l Factory<Genotype<DoubleGene>> GTF =
4 Genotype . o f (DoubleChromosome . o f (0 , 1)) ;
5

6 // The f i t n e s s func t i on .
7 private stat ic Double f i t n e s s (f i n a l Genotype<DoubleGene> gt) {
8 return gt . getGene () . g e tA l l e l e () ;
9 }

10

11 // Create new evo lu t i on s t a r t ob j e c t .
12 private stat ic Evolut ionStart<DoubleGene , Double>
13 s t a r t (f i n a l int popu lat ionS ize , f i n a l long gene ra t i on) {
14 f i n a l Population<DoubleGene , Double> populat ion = GTF
15 . i n s t an c e s ()
16 .map(gt −> Phenotype
17 . o f (gt , generat ion , Spec ia lEng ine : : f i t n e s s))
18 . l im i t (popu la t i onS i z e)
19 . c o l l e c t (Populat ion . toPopulat ion ()) ;
20

21 return Evo lut ionStar t . o f (populat ion , gene ra t i on) ;
22 }
23

24 // The s p e c i a l evo lu t i on func t i on .
25 private stat ic Evolut ionResult<DoubleGene , Double>
26 evo lve (f i n a l Evolut ionStart<DoubleGene , Double> s t a r t) {
27 return . . . ; // Add implementation !
28 }
29

30 public stat ic void main (f i n a l St r ing [] a rgs) {
31 f i n a l Genotype<DoubleGene> best = EvolutionStream
32 . o f (() −> s t a r t (50 , 0) , Spec ia lEng ine : : evo lve)
33 . l im i t (l im i t . bySteadyFitness (10))
34 . l im i t (100)
35 . c o l l e c t (Evo lut ionResu l t . toBestGenotype ()) ;
36

37 System . out . p r i n t l n (" Best Genotype : " + best)) ;
38 }
39 }

Listing 20: Special evolution engine

Listing 20 shows a complete implementation stub for using an own special
evolution Function.

14Also refer to section 3.3.4 on page 19 on how to create an EvolutionStream from an
evolution Function.

36

6 ADVANCED TOPICS

6 Advanced topics
This section describes some advanced topics for setting up an evolution Engine
or EvolutionStream. It contains some problem encoding examples and how to
override the default validation strategy of the given Genotypes. The last section
contains a detailed description of the implemented termination strategies.

6.1 Encoding
This section presents some encoding examples for common problems. The en-
coding should be a complete and minimal expression of a solution to the prob-
lem. An encoding is complete if it contains enough information to represent
every solution to the problem. An minimal encoding contains only the infor-
mation needed to represent a solution to the problem. If an encoding contains
more information than is needed to uniquely identify solutions to the problem,
the search space will be larger than necessary.

Whenever possible, the encoding should not be able to represent infeasible
solutions. If a genotype can represent an infeasible solution, care must be taken
in the fitness function to give partial credit to the genotype for its »good« genetic
material while sufficiently penalizing it for being infeasible. Implementing a
specialized Chromosome, which won’t create invalid encodings can be a solution
to this problem. In general, it is much more desirable to design a representation
that can only represent valid solutions so that the fitness function measures only
fitness, not validity. An encoding that includes invalid individuals enlarges the
search space and makes the search more costly.

Some of the encodings represented in the following sections has been im-
plemented by Jenetics, using the Codec15 interface, and are available through
static factory methods of the org.jenetics.engine.codecs class.

6.1.1 Real function

Jenetics contains three different numeric gene and chromosome implementa-
tions, which can be used to encode a real function, f : R→ R:

• IntegerGene/Chromosome,

• LongGene/Chromosome and

• DoubleGene/Chromosome.

It is quite easy to encode a real function. Only the minimum and maximum
value of the function domain must be defined. The DoubleChromosome of length
1 is then wrapped into a Genotype.

1 Genotype . o f (
2 DoubleChromosome . o f (min , max , 1)
3) ;

Decoding the double value from the Genotype is also straight forward. Just
get the first gene from the first chromosome, with the getGene() method, and
convert it to a double.

15See section 6.2 on page 43.

37

6.1 Encoding 6 ADVANCED TOPICS

1 stat ic double toDouble (f i n a l Genotype<DoubleGene> gt) {
2 return gt . getGene () . doubleValue () ;
3 }

When the Genotype only contains scalar chromosomes16, it should be clear,
that it can’t be altered by every Alterer. That means, that none of the
Crossover alterers will be able to create modified Genotypes. For scalars the ap-
propriate alterers would be the MeanAlterer, GaussianAlterer and Mutator.

Scalar Chromosomes and/or Genotypes can only be altered by
MeanAlterer, GaussianAlterer and Mutator classes. Other alterers are
allowed, but will have no effect on the Chromosomes.

6.1.2 Scalar function

Optimizing a function f (x1, ..., xn) of one or more variable whose range is one-
dimensional, we have two possibilities for the Genotype encoding.[13] For the
first encoding we expect that all variables, xi, have the same minimum and
maximum value. In this case we can simply create a Genotype with a Numeric -
Chromosome of the desired length n.

1 Genotype . o f (
2 DoubleChromosome . o f (min , max , n)
3) ;

The decoding of the Genotype requires a cast of the first Chromosome to a
DoubleChromosome. With a call to the DoubleChromosome.toArray() method
we return the variables (x1, ..., xn) as double[] array.

1 stat ic double [] t oS c a l a r s (f i n a l Genotype<DoubleGene> gt) {
2 return ((DoubleChromosome) gt . getChromosome ()) . toArray () ;
3 }

With the first encoding you have the possibility to use all available alterers,
including all Crossover alterer classes.

The second encoding must be used if the minimum and maximum value of
the variables xi can’t be the same for all i. For the different domains, each
variable xi is represented by a Numeric Chromosome with length one. The final
Genotype will consist of n Chromosomes with length one.

1 Genotype . o f (
2 DoubleChromosome . o f (min1 , max1 , 1) ,
3 DoubleChromosome . o f (min2 , max2 , 1) ,
4 . . .
5 DoubleChromosome . o f (minn , maxn , 1)
6) ;

With the help of the new Java Stream API, the decoding of the Genotype
can be done in a view lines. The DoubleChromosome stream, which is created
from the chromosome Seq, is first mapped to double values and then collected
into an array.

16Scalar chromosomes contains only one gene.

38

6.1 Encoding 6 ADVANCED TOPICS

1 stat ic double [] t oS c a l a r s (f i n a l Genotype<DoubleGene> gt) {
2 return gt . toSeq () . stream ()
3 . mapToDouble (c −> c . getGene () . doubleValue ())
4 . toArray () ;
5 }

As already mentioned, with the use of scalar chromosomes we can only use
the MeanAlterer, GaussianAlterer or Mutator alterer class.

If there are performance issues in converting the Genotype into a double[]
array, or any other numeric array, you can access the Genes directly via the
Genotype.get(i, j) method and than convert it to the desired numeric value,
by calling intValue(), longValue() or doubleValue().

6.1.3 Vector function

A function f (X1, ..., Xn), of one to n variables whose range is m-dimensional, is
encoded by m DoubleChromosomes of length n.[14] The domain–minimum and
maximum values–of one variable Xi are the same in this encoding.

1 Genotype . o f (
2 DoubleChromosome . o f (min1 , max1 , m) ,
3 DoubleChromosome . o f (min2 , max2 , m) ,
4 . . .
5 DoubleChromosome . o f (minn , maxn , m)
6) ;

The decoding of the vectors is quite easy with the help of the Java Stream
API. In the first map we have to cast the Chromosome<DoubleGene> object to
the actual DoubleChromosome. The second map then converts each Double-
Chromosome to an double[] array, which is collected to an 2-dimensional dou-
ble[n][m] array afterwards.

1 stat ic double [] [] toVectors (f i n a l Genotype<DoubleGene> gt) {
2 return gt . toSeq () . stream ()
3 .map(DoubleChromosome . class : : c a s t)
4 .map(DoubleChromosome : : toArray)
5 . toArray (double [] [] : : new) ;
6 }

For the special case of n = 1, the decoding of the Genotype can be simplified
to the decoding we introduced for scalar functions in section 6.1.2.

1 stat ic double [] toVector (f i n a l Genotype<DoubleGene> gt) {
2 return ((DoubleChromosome) gt . getChromosome ()) . toArray () ;
3 }

6.1.4 Affine transformation

An affine transformation17, 18 is usually performed by a matrix multiplication
with a transformation matrix—in a homogeneous coordinates system19. For a
transformation in R2, we can define the matrix A20:

A =

 a11 a12 a13
a21 a22 a23
0 0 1

 . (6.1)

17https://en.wikipedia.org/wiki/Affine_transformation
18http://mathworld.wolfram.com/AffineTransformation.html
19https://en.wikipedia.org/wiki/Homogeneous_coordinates
20https://en.wikipedia.org/wiki/Transformation_matrix

39

https://en.wikipedia.org/wiki/Affine_transformation
http://mathworld.wolfram.com/AffineTransformation.html
https://en.wikipedia.org/wiki/Homogeneous_coordinates
https://en.wikipedia.org/wiki/Transformation_matrix

6.1 Encoding 6 ADVANCED TOPICS

A simple representation can be done by creating a Genotype which contains two
DoubleChromosomes with a length of 3.

1 Genotype . o f (
2 DoubleChromosome . o f (min , max , 3) ,
3 DoubleChromosome . o f (min , max , 3)
4) ;

The drawback with this kind of encoding is, that we will create a lot of invalid
(non-affine transformation matrices) during the evolution process, which must
be detected and discarded. It is also difficult to find the right parameters for
the min and max values of the DoubleChromosomes.

A better approach will be to encode the transformation parameters instead
of the transformation matrix. The affine transformation can be expressed by
the following parameters:

• sx – the scale factor in x direction

• sy – the scale factor in y direction

• tx – the offset in x direction

• ty – the offset in y direction

• θ – the rotation angle clockwise around origin

• kx – shearing parallel to x axis

• ky – shearing parallel to y axis

This parameters can then be represented by the following Genotype.
1 Genotype . o f (
2 // Sca l e
3 DoubleChromosome . o f (sxMin , sxMax) ,
4 DoubleChromosome . o f (syMin , syMax) ,
5 // Trans la t i on
6 DoubleChromosome . o f (txMin , txMax) ,
7 DoubleChromosome . o f (tyMin , tyMax) ,
8 // Rotation
9 DoubleChromosome . o f (thMin , thMax) ,

10 // Shear
11 DoubleChromosome . o f (kxMin , kxMax) ,
12 DoubleChromosome . o f (kyMin , kxMax)
13)

This encoding ensures that no invalid Genotype will be created during the
evolution process, since the crossover will be only performed on the same kind
of chromosome (same chromosome index). To convert the Genotype back to the
transformation matrix A, the following equations can be used:

a11 = sx cos θ + kxsy sin θ
a12 = sykx cos θ − sx sin θ
a13 = tx

a21 = kysx cos θ + sy sin θ (6.2)
a22 = sy cos θ − sxky sin θ
a23 = ty

40

6.1 Encoding 6 ADVANCED TOPICS

This corresponds to an transformation order of T · Sh · Sc ·R: 1 0 tx
0 1 ty
0 0 1

 ·
 1 kx 0

ky 1 0
0 0 1

 ·
 sx 0 0

0 sy 0
0 0 1

 ·
 cos θ − sin θ 0

sin θ cos θ 0
0 0 1

 .

In Java code, the conversion from the Genotype to the transformation matrix,
will look like this:

1 stat ic double [] [] toMatrix (f i n a l Genotype<DoubleGene> gt) {
2 f i n a l double sx = gt . get (0 , 0) . doubleValue () ;
3 f i n a l double sy = gt . get (1 , 0) . doubleValue () ;
4 f i n a l double tx = gt . get (2 , 0) . doubleValue () ;
5 f i n a l double ty = gt . get (3 , 0) . doubleValue () ;
6 f i n a l double th = gt . get (4 , 0) . doubleValue () ;
7 f i n a l double kx = gt . get (5 , 0) . doubleValue () ;
8 f i n a l double ky = gt . get (6 , 0) . doubleValue () ;
9

10 f i n a l double cos_th = cos (th) ;
11 f i n a l double sin_th = s in (th) ;
12 f i n a l double a11 = cos_th∗ sx + kx∗ sy∗ sin_th ;
13 f i n a l double a12 = cos_th∗kx∗ sy − sx∗ sin_th ;
14 f i n a l double a21 = cos_th∗ky∗ sx + sy∗ sin_th ;
15 f i n a l double a22 = cos_th∗ sy − ky∗ sx∗ sin_th ;
16

17 return new double [] [] {
18 {a11 , a12 , tx } ,
19 {a21 , a22 , ty } ,
20 {0 . 0 , 0 . 0 , 1 .0}
21 } ;
22 }

For the introduced encoding all kind of alterers can be used. Since we have
one scalar DoubleChromosome, the rotation angle θ, it is recommended also to
add an MeanAlterer or GaussianAlterer to the list of alterers.

6.1.5 Graph

A graph can be represented in many different ways. The most known graph
representation is the adjacency matrix. The following encoding examples uses
adjacency matrices with different characteristics.

Undirected graph In an undirected graph the edges between the vertices
have no direction. If there is a path between nodes i and j, it is assumed that
there is also path from j to i.

Figure 6.1 on the next page shows an undirected graph and its corresponding
matrix representation. Since the edges between the nodes have no direction, the
values of the lower diagonal matrix are not taken into account. An application
which optimizes an undirected graph has to ignore this part of the matrix.21

1 f i n a l int n = 6 ;
2 f i n a l Genotype<BitGene> gt = Genotype
3 . o f (BitChromosome . o f (n) , n) ;

21This property violates the minimal encoding requirement we mentioned at the beginning
of section 6.1 on page 37. For simplicity reason this will be ignored for the undirected graph
encoding.

41

6.1 Encoding 6 ADVANCED TOPICS

Figure 6.1: Undirected graph and adjacency matrix

The code snippet above shows how to create an adjacency matrix for a graph
with n = 6 nodes. It creates a genotype which consists of n BitChromosomes
of length n each. Whether the node i is connected to node j can be easily
checked by calling gt.get(i-1, j-1).booleanValue(). For extracting the
whole matrix as int[] array, the following code can be used.

1 f i n a l int [] [] array = gt . toSeq () . stream ()
2 .map(c −> c . toSeq () . stream ()
3 . mapToInt (BitGene : : o rd i na l)
4 . toArray ())
5 . toArray (int [] [] : : new) ;

Directed graph A directed graph (digraph) is a graph where the path be-
tween the nodes have a direction associated with them. The encoding of a
directed graph looks exactly like the encoding of an undirected graph. This
time the whole matrix is used and the second diagonal matrix is no longer
ignored.

Figure 6.2: Directed graph and adjacency matrix

Figure 6.2 shows the adjacency matrix of a digraph. This time the whole
matrix is used for representing the graph.

Weighted directed graph A weighted graph associates a weight (label) with
every path in the graph. Weights are usually real numbers. They may be

42

6.2 Codec 6 ADVANCED TOPICS

restricted to rational numbers or integers.

Figure 6.3: Weighted graph and adjacency matrix

The following code snippet shows how the Genotype of the matrix is created.
1 f i n a l int n = 6 ;
2 f i n a l double min = −1;
3 f i n a l double max = 20 ;
4 f i n a l Genotype<DoubleGene> gt = Genotype
5 . o f (DoubleChromosome . o f (min , max , n) , n) ;

For accessing the single matrix elements, you can simply call Genotype-
.get(i, j).doubleValue(). If the interaction with another library requires
an double[][] array, the following code can be used.

1 f i n a l double [] [] array = gt . toSeq () . stream ()
2 .map(DoubleChromosome . class : : c a s t)
3 .map(DoubleChromosome : : toArray)
4 . toArray (double [] [] : : new) ;

6.2 Codec
The Codec interface—located in the org.jenetics.engine package—narrows
the gap between the fitness Function, which should be maximized/minimized,
and the Genotype representation, which can be understand by the evolution
Engine. With the Codec interface it is possible to implement the encodings of
section 6.1 on page 37 in a more formalized way.

Normally, the Engine expects a fitness function which takes a Genotype as
input. This Genotype has then to be transformed into an object of the problem
domain. The usage Codec interface allows a tighter coupling of the Genotype
definition and the transformation code.22

1 public interface Codec<T, G extends Gene<?, G>> {
2 public Factory<Genotype<G>> encoding () ;
3 public Function<Genotype<G>, T> decoder () ;
4 public default T decode (f i n a l Genotype<G> gt) { . . . }
5 }

Listing 21: Codec interface

22Section 6.1 on page 37 describes some possible encodings for common optimization prob-
lems.

43

6.2 Codec 6 ADVANCED TOPICS

Listing 21 on the preceding page shows the Codec interface. The encoding()
method returns the Genotype factory, which is used by the Engine for creating
new Genotypes. The decoder Function, which is returned by the decoder()
method, transforms the Genotype to the argument type of the fitness Function.
Without the Codec interface, the implementation of the fitness Function is pol-
luted with code, which transforms the Genotype into the argument type of the
actual fitness Function.

1 stat ic double eva l (f i n a l Genotype<DoubleGene> gt) {
2 f i n a l double x = gt . getGene () . doubleValue () ;
3 // Do some c a l c u l a t i o n with ’ x ’ .
4 return . . .
5 }

The Codec for the example above is quite simple and is shown below. It is not
necessary to implement the Codec interface, instead you can use the Codec.of
factory method for creating new Codec instances.

1 f i n a l DoubleRange domain = DoubleRange . o f (0 , 2∗PI) ;
2 f i n a l Codec<Double , DoubleGene> codec = Codec . o f (
3 Genotype . o f (DoubleChromosome . o f (domain)) ,
4 gt −> gt . getChromosome () . getGene () . g e tA l l e l e ()
5) ;

When using an Codec instance, the fitness Function solely contains code from
your actual problem domain—no dependencies to classes of the Jenetics library.

1 stat ic double eva l (f i n a l double x) {
2 // Do some c a l c u l a t i o n with ’ x ’ .
3 return . . .
4 }

Jenetics comes with a set of standard encodings, which are created via static
factory methods of the org.jenetics.engine.codecs class. The following sub-
sections shows some of the implementation of this methods.

6.2.1 Scalar codec

Listing 22 shows the implementation of the codecs.ofScalar factory method—
for Integer scalars.

1 stat ic Codec<Integer , IntegerGene> o fS c a l a r (IntRange domain) {
2 return Codec . o f (
3 Genotype . o f (IntegerChromosome . o f (domain)) ,
4 gt −> gt . getChromosome () . getGene () . g e tA l l e l e ()
5) ;
6 }

Listing 22: Codec factory method: ofScalar

The usage of the Codec, created by this factory method, simplifies the im-
plementation of the fitness Function and the creation of the evolution Engine.
For scalar types, the saving, in complexity and lines of code, is not that big, but
using the factory method is still quite handy.

The following listing demonstrates the interaction between Codec, fitness
Function and evolution Engine.

1 class Main {
2 // F i tne s s func t i on d i r e c t l y takes an ’ i n t ’ va lue .
3 stat ic double f i t n e s s (int arg) {

44

6.2 Codec 6 ADVANCED TOPICS

4 return . . . ;
5 }
6 public stat ic void main (St r ing [] a rgs) {
7 f i n a l Engine<IntegerGene , Double> engine = Engine
8 . bu i l d e r (Main : : f i t n e s s , o f S c a l a r (IntRange . o f (0 , 100)))
9 . bu i ld () ;

10 . . .
11 }
12 }

6.2.2 Vector codec

In the listing 23, the ofVector factory method returns a Codec for an int[]
array. The domain parameter defines the allowed range of the int values and
the length defines the length of the encoded int array.

1 stat ic Codec<int [] , IntegerGene> ofVector (
2 IntRange domain ,
3 int l ength
4) {
5 return Codec . o f (
6 Genotype . o f (IntegerChromosome . o f (domain , l ength)) ,
7 gt −> ((IntegerChromosome) gt . getChromosome ()) . toArray ()
8) ;
9 }

Listing 23: Codec factory method: ofVector

The usage example of the vector Codec is almost the same as for the scalar
Codec. As additional parameter, we need to define the length of the desired
array and we define our fitness function with an int[] array.

1 class Main {
2 // F i tne s s func t i on d i r e c t l y takes an ’ i n t [] ’ array .
3 stat ic double f i t n e s s (int [] a rgs) {
4 return . . . ;
5 }
6 public stat ic void main (St r ing [] a rgs) {
7 f i n a l Engine<IntegerGene , Double> engine = Engine
8 . bu i l d e r (
9 Main : : f i t n e s s ,

10 ofVector (IntRange . o f (0 , 100) , 10))
11 . bu i ld () ;
12 . . .
13 }
14 }

6.2.3 Subset codec

There are currently two kinds of subset codecs you can choose from: finding
subsets with variable size and with fixed size.

Variable-sized subsets A Codec for variable-sized subsets can be easily im-
plemented with the use of a BitChromosome, as shown in listing 24.

1 stat ic <T> Codec<ISeq<T>, BitGene> ofSubSet (ISeq<T> bas i cSe t) {
2 return Codec . o f (
3 Genotype . o f (BitChromosome . o f (ba s i cSe t . l ength ())) ,
4 gt −> ((BitChromosome) gt . getChromosome ()) . ones ()

45

6.2 Codec 6 ADVANCED TOPICS

5 .mapToObj(ba s i cSe t : : get)
6 . c o l l e c t (ISeq . toISeq ())
7) ;
8 }

Listing 24: Codec factory method: ofSubSet

The following usage example of subset Codec shows a simplified version of
the Knapsack problem (see section 9.4 on page 69). We try to find a subset,
from the given basic SET, where the sum of the values is as big as possible, but
smaller or equal than 20.

1 class Main {
2 // The ba s i c s e t from where to choose an ’ optimal ’ subset .
3 f i n a l stat ic ISeq<Integer> SET =
4 ISeq . o f (1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10) ;
5

6 // F i tne s s func t i on d i r e c t l y takes an ’ i n t ’ va lue .
7 stat ic int f i t n e s s (ISeq<Integer> subset) {
8 a s s e r t (subset . s i z e () <= SET. s i z e ()) ;
9 f i n a l int s i z e = subset . stream () . c o l l e c t (

10 Co l l e c t o r s . summingInt (In t eg e r : : intValue)) ;
11 return s i z e <= 20 ? s i z e : 0 ;
12 }
13 public stat ic void main (St r ing [] a rgs) {
14 f i n a l Engine<BitGene , Double> engine = Engine
15 . bu i l d e r (Main : : f i t n e s s , ofSubSet (SET))
16 . bu i ld () ;
17 . . .
18 }
19 }

Fixed-size subsets23 The second kind of subset codec allows you to find the
best subset of a given, fixed size. A classical usage for this encoding is the Subset
sum problem24:
Given a set (or multi-set) of integers, is there a non-empty subset whose sum is
zero? For example, given the set {−7,−3,−2, 5, 8}, the answer is yes because
the subset {−3, -2, 5} sums to zero. The problem is NP-complete25.

1 public class SubsetSum
2 implements Problem<ISeq<Integer >, EnumGene<Integer >, Integer>
3 {
4 private f i n a l ISeq<Integer> _basicSet ;
5 private f i n a l int _size ;
6

7 public SubsetSum (ISeq<Integer> bas i cSet , int s i z e) {
8 _basicSet = bas i cSe t ;
9 _size = s i z e ;

10 }
11

12 @Override
13 public Function<ISeq<Integer >, Integer> f i t n e s s () {
14 return subset −> abs (
15 subset . stream () . mapToInt (In t eg e r : : intValue) . sum()) ;

23The algorithm for choosing subsets based on a FORTRAN77 version, originally imple-
mented by Albert Nijenhuis, Herbert Wilf. The actual Java implementation is based on the
C++ version by John Burkardt.[9], [16]

24https://en.wikipedia.org/wiki/Subset_sum_problem
25https: // en. wikipedia. org/ wiki/ NP-completeness

46

https://en.wikipedia.org/wiki/Subset_sum_problem
https://en.wikipedia.org/wiki/NP-completeness

6.2 Codec 6 ADVANCED TOPICS

16 }
17

18 @Override
19 public Codec<ISeq<Integer >, EnumGene<Integer>> codec () {
20 return codecs . ofSubSet (_basicSet , _s ize) ;
21 }
22 }

6.2.4 Permutation codec

This kind of codec can be used for problems where optimal solution depends on
the order of the input elements. A classical example for such problems is the
Knapsack problem (chapter 9.5 on page 71).

1 stat ic <T> Codec<T[] , EnumGene<T>> ofPermutation (T . . . a l l e l e s) {
2 return Codec . o f (
3 Genotype . o f (PermutationChromosome . o f (a l l e l e s)) ,
4 gt −> gt . getChromosome () . toSeq () . stream ()
5 .map(EnumGene : : g e tA l l e l e)
6 . toArray (l ength −> (T []) Array . newInstance (
7 a l l e l e s [0] . g e tC la s s () , l ength))
8) ;
9 }

Listing 25: Codec factory method: ofPermutation

Listing 25 shows the implementation of a permutation codec, where the order
of the given alleles influences the value of the fitness function. An alternate
formulation of the traveling salesman problem is shown in the following listing.
It uses the permutation codec in listing 25 and uses java.awt.geom Points for
representing the city locations.

1 public class TSM {
2 // The l o c a t i o n s to v i s i t .
3 stat ic f i n a l ISeq<Point> POINTS = ISeq . o f (. . .) ;
4

5 // The permutation codec .
6 stat ic f i n a l Codec<ISeq<Point >, EnumGene<Point>>
7 CODEC = codecs . ofPermutation (POINTS) ;
8

9 // The f i t n e s s func t i on (in the problem domain) .
10 stat ic double d i s t (f i n a l ISeq<Point> p) {
11 return IntStream . range (0 , p . l ength)
12 . mapToDouble (i −> p . get (i)
13 . d i s t anc e (p . get (i + i%p . l ength ())))
14 . sum() ;
15 }
16

17 // The evo lu t i on eng ine .
18 stat ic f i n a l Engine<EnumGene<Point >, Double> ENGINE = Engine
19 . bu i l d e r (TSM: : d i s t , CODEC)
20 . opt imize (Optimize .MINIMUM)
21 . bu i ld () ;
22

23 // Find the s o l u t i o n .
24 public stat ic void main (f i n a l St r ing [] a rgs) {
25 f i n a l ISeq<Point> r e s u l t = CODEC. decode (
26 ENGINE. stream ()
27 . l im i t (10)
28 . c o l l e c t (Evo lut ionResu l t . toBestGenotype ())
29) ;

47

6.2 Codec 6 ADVANCED TOPICS

30

31 System . out . p r i n t l n (r e s u l t) ;
32 }
33 }

6.2.5 Composite codec

The composite Codec factory method allows to combine two or more Codecs
into one. Listing 26 shows the method signature of the factory method, which
is implemented directly in the Codec interface.

1 stat ic <G extends Gene<?, G>, A, B, T> Codec<T, G> of (
2 f i n a l Codec<A, G> codec1 ,
3 f i n a l Codec<B, G> codec2 ,
4 f i n a l BiFunction<A, B, T> decoder
5) { . . . }

Listing 26: Composite Codec factory method

As you can see from the method definition, the combining Codecs and the
combined Codec have the same Gene type.

Only Codecs which the same Gene type can be composed by the com-
bining factory methods of the Codec class.

The following listing shows a full example which uses a combined Codec. It
uses the subset Codec, introduced in section 6.2.3 on page 45, and combines it
into a Tuple of subsets.

1 class Main {
2 stat ic f i n a l ISeq<Integer> SET =
3 ISeq . o f (1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9) ;
4

5 // Result type o f the combined ’Codec ’ .
6 stat ic f i n a l class Tuple<A, B> {
7 f i n a l A f i r s t ;
8 f i n a l B second ;
9 Tuple (f i n a l A f i r s t , f i n a l B second) {

10 this . f i r s t = f i r s t ;
11 this . second = second ;
12 }
13 }
14

15 stat ic int f i t n e s s (Tuple<ISeq<Integer >, ISeq<Integer>> args) {
16 return args . f i r s t . stream ()
17 . mapToInt (In t eg e r : : intValue) . sum() −
18 args . second . stream ()
19 . mapToInt (In t eg e r : : intValue) . sum() ;
20 }
21

22 public stat ic void main (St r ing [] a rgs) {
23 // Combined ’Codec ’ .
24 f i n a l Codec<Tuple<ISeq<Integer >, ISeq<Integer >>, BitGene>
25 codec = Codec . o f (
26 codecs . ofSubSet (SET) ,
27 codecs . ofSubSet (SET) ,
28 Tuple : :new
29) ;

48

6.3 Problem 6 ADVANCED TOPICS

30

31 f i n a l Engine<BitGene , Integer> engine = Engine
32 . bu i l d e r (Main : : f i t n e s s , codec)
33 . bu i ld () ;
34

35 f i n a l Phenotype<BitGene , Integer> pt = engine . stream ()
36 . l im i t (100)
37 . c o l l e c t (Evo lut ionResu l t . toBestPhenotype ()) ;
38

39 // Use the codec f o r conver t ing the r e s u l t ’ Genotype ’ .
40 f i n a l Tuple<ISeq<Integer >, ISeq<Integer>> r e s u l t =
41 codec . decoder () . apply (pt . getGenotype ()) ;
42 }
43 }

If you have to combine more than one Codec into one, you have to use the
second, more general, combining function: Codec.of(ISeq<Codec<?, G>�>,-
Function<Object[], T>). The example above shows how to use the general
combining function. It is just a little bit more verbose and requires explicit casts
for the sub-codec types.

1 f i n a l Codec<Trip le<Long , Long , Long>, LongGene>
2 codec = Codec . o f (ISeq . o f (
3 codecs . o f S c a l a r (LongRange . o f (0 , 100)) ,
4 codecs . o f S c a l a r (LongRange . o f (0 , 1000)) ,
5 codecs . o f S c a l a r (LongRange . o f (0 , 10000))) ,
6 va lue s −> {
7 f i n a l Long f i r s t = (Long) va lue s [0] ;
8 f i n a l Long second = (Long) va lue s [1] ;
9 f i n a l Long th i rd = (Long) va lue s [2] ;

10 return new Trip le <>(f i r s t , second , th i rd) ;
11 }
12) ;

6.3 Problem
The Problem interface is a further abstraction level, which allows to bind the
problem encoding and the fitness function into one class.

1 public interface Problem<
2 T,
3 G extends Gene<?, G>,
4 C extends Comparable<? super C>
5 > {
6 public Function<T, C> f i t n e s s () ;
7 public Codec<T, G> codec () ;
8 }

Listing 27: Problem interface

Listing 27 shows the Problem interface. The generic type T represents the
native argument type of the fitness function and C the Comparable result of the
fitness function. G is the Gene type, which is used by the evolution Engine.

1 // De f i n i t i o n o f the Ones count ing problem .
2 f i n a l Problem<ISeq<BitGene>, BitGene , Integer> ONES_COUNTING =
3 Problem . o f (
4 // F i tne s s Function<ISeq<BitGene>, Integer>
5 genes −> (int) genes . stream ()
6 . f i l t e r (BitGene : : ge tB i t) . count () ,
7 Codec . o f (

49

6.4 Validation 6 ADVANCED TOPICS

8 // Genotype Factory<Genotype<BitGene>>
9 Genotype . o f (BitChromosome . o f (20 , 0 . 15)) ,

10 // Genotype conver s i on
11 // Function<Genotype<BitGene>, <BitGene>>
12 gt −> gt . getChromosome () . toSeq ()
13)
14) ;
15

16 // Engine c r e a t i on f o r Problem so l v i n g .
17 f i n a l Engine<BitGene , Integer> engine = Engine
18 . bu lder (ONES_COUNTING)
19 . popu la t i onS i z e (150)
20 . s u r v i v o r s S e l e c t o r (newTournamentSelector <>(5))
21 . o f f s p r i n g S e l e c t o r (new RouletteWhee lSe lector <>())
22 . a l t e r e r s (
23 new Mutator <>(0.03) ,
24 new Sing lePo intCrossover <>(0.125))
25 . bu i ld () ;

The listing above shows how a new Engine is created by using a predefined
Problem instance. This allows the complete decoupling of problem and Engine
definition.

6.4 Validation
A given problem should usually encoded in a way, that it is not possible for
the evolution Engine to create invalid individuals (Genotypes). Some possible
encodings for common data-structures are described in section 6.1 on page 37.
The Engine creates new individuals in the altering step, by rearranging (or
creating new) Genes within a Chromosome. Since a Genotype is treated as valid
if every single Gene in every Chromosome is valid, the validity property of the
Genes determines the validity of the whole Genotype.

The Engine tries to create only valid individuals when creating the initial
Population and when it replaces Genotypes which has been destroyed by the
altering step. Individuals which has exceeded its lifetime are also replaced by
new valid ones. To guarantee the termination of the Genotype creation, the
Engine is parameterized with the maximal number of retries (individualCrea-
tionRetries)26.

If the described validation mechanism doesn’t fulfill your needs, you can
override the validation mechanism by creating the Engine with an external
Genotype validator.

1 f i n a l Predicate <? super Genotype<DoubleGene>> va l i d a t o r = gt −> {
2 // Implement advanced Genotype check .
3 boolean va l i d = . . . ;
4 return va l i d ;
5 } ;
6 f i n a l Engine<DoubleGene , Double> engine = Engine . bu i l d e r (gt f , f f)
7 . l im i t (100)
8 . genotypeVal idator (v a l i d a t o r)
9 . i nd i v i dua lC r e a t i onRe t r i e s (15)

10 . bu i ld () ;

Having the possibility to replace the default validation check is a nice thing,
but it is better to not create invalid individuals in the first place. For achieving
this goal, you have two possibilities:

26See section 3.3.3 on page 17.

50

6.5 Termination 6 ADVANCED TOPICS

1. Creating an explicit Genotype factory and

2. implementing new Gene/Chromosome/Alterer classes.

Genotype factory The usual mechanism for defining an encoding is to create
a Genotype prototype27. Since the Genotype implements the Factory interface,
an prototype instance can easily passed to the Engine.builder method. For a
more advanced Genotype creation, you only have to create an explicit Genotype
factory.

1 f i n a l Factory<Genotype<DoubleGene>> g t f = () −> {
2 // Implement your advanced Genotype f a c t o ry .
3 Genotype<DoubleGene> genotype = . . . ;
4 return genotype ;
5 } ;
6 f i n a l Engine<DoubleGene , Double> engine = Engine . bu i l d e r (gt f , f f)
7 . l im i t (100)
8 . i nd i v i dua lC r e a t i onRe t r i e s (15)
9 . bu i ld () ;

With this method you can avoid that the Engine creates invalid individuals
in the first place, but it is still possible that the alterer step will destroy your
Genotypes.

Gene/Chromosome/Alterer Creating your own Gene, Chromosome and Alter-
er classes is the most heavy-wighted possibility for solving the validity problem.
Refer to section 5 on page 31 for a more detailed description on how to implement
this classes.

6.5 Termination
Termination is the criterion by which the evolution stream decides whether to
continue or truncate the stream. This section gives a deeper insight into the
different ways of terminating or truncating the evolution stream, respectively.

The termination strategies in the following sub-sections were tested by solv-
ing the Knapsack problem (see section 9.4 on page 69) with 250 items. This
makes it a real problem with a search-space size of 2250 ≈ 1075 elements. To
make the tests comparable, all runs uses the very same set of knapsack items.

6.5.1 Fixed generation

The simplest way for terminating the evolution process, is to define a maximal
number of generations on the EvolutionStream. It just uses the existing limit
method of the Java Stream interface.

1 f i n a l long MAX_GENERATIONS = 100 ;
2 EvolutionStream<DoubleGene , Double> stream = engine . stream ()
3 . l im i t (MAX_GENERATIONS) ;

This kind of termination method should always be applied—usually addi-
tional with other evolution terminators—, to guarantee the truncation of the
evolution stream and to define an upper limit of the executed generations.

27https://en.wikipedia.org/wiki/Prototype_pattern

51

https://en.wikipedia.org/wiki/Prototype_pattern

6.5 Termination 6 ADVANCED TOPICS

Figure 6.4: Fixed generation termination

Diagram 6.4 shows the best fitness values of the used Knapsack problem after
a given number of generations, whereas the candle-stick points represents the
min, 25thpercentile, median, 75th percentile and max fitness after 250 repetitions
per generation. The solid line shows for the mean of the best fitness values. For
a small increase of the fitness value, the needed generations grows exponentially.
This is especially the case when the fitness is approaching to its maximal value.

6.5.2 Steady fitness

The steady fitness strategy truncates the evolution stream if its best fitness
hasn’t changed after a given number of generations. The predicate maintains
an internal state, the number of generations with non increasing fitness, and
must be newly created for every evolution stream.

1 f i n a l class SteadyFitnessLimit<C extends Comparable<? super C>>
2 implements Predicate<Evolut ionResult <?, C>>
3 {
4 private f i n a l int _generat ions ;
5 private boolean _proceed = true ;
6 private int _stable = 0 ;
7 private C _f i t n e s s ;
8

9 public SteadyFitnessL imit (f i n a l int gene ra t i on s) {
10 _generat ions = gene ra t i on s ;
11 }
12

13 @Override
14 public boolean t e s t (f i n a l Evolut ionResult <?, C> er) {
15 i f (! _proceed) return fa l se ;
16 i f (_ f i t n e s s == null) {
17 _f i t n e s s = er . g e tBe s tF i tne s s () ;
18 _stable = 1 ;
19 } else {
20 f i n a l Optimize opt = r e s u l t . getOptimize () ;
21 i f (opt . compare (_f i tne s s , e r . g e tBe s tF i tne s s ()) >= 0) {

52

6.5 Termination 6 ADVANCED TOPICS

22 _proceed = ++_stable <= _generat ions ;
23 } else {
24 _f i t n e s s = er . g e tBe s tF i tne s s () ;
25 _stable = 1 ;
26 }
27 }
28 return _proceed ;
29 }
30 }

Listing 28: Steady fitness

Listing 28 on the preceding page shows the implementation of the limit-
.bySteadyFitness(int) in the org.jenetics.engine package. It should give
you an impression of how to implement own termination strategies, which pos-
sible holds and internal state.

1 Engine<DobuleGene , Double> engine = . . .
2 EvolutionStream<DoubleGene , Double> stream = engine . stream ()
3 . l im i t (l im i t . bySteadyFitness (15)) ;

The steady fitness terminator can be created by the bySteadyFitness factory
method of the org.jenetics.engine.limit class. In the example above, the
evolution stream is terminated after 15 stable generations.

Figure 6.5: Steady fitness termination

Diagram 6.5 shows the actual total executed generation depending on the de-
sired number of steady fitness generations. The variation of the total generation
is quite big, as shown by the candle-sticks. Though the variation can be quite
big—the termination test has been repeated 250 times for each data point—, the
tests showed that the steady fitness termination strategy always terminated, at

53

6.5 Termination 6 ADVANCED TOPICS

least for the given test setup. The lower diagram give an overview of the fitness
progression. Only the mean values of the maximal fitness is shown.

6.5.3 Evolution time

This termination strategy stops the evolution when the elapsed evolution time
exceeds an user-specified maximal value. The evolution stream is only truncated
at the end of an generation and will not interrupt the current evolution step.
An maximal evolution time of zero ms will at least evaluate one generation. In
an time-critical environment, where a solution must be found within a maximal
time period, this terminator let you define the desired guarantees.

1 Engine<DobuleGene , Double> engine = . . .
2 EvolutionStream<DoubleGene , Double> stream = engine . stream ()
3 . l im i t (l im i t . byExecutionTime (Duration . o fM i l l i s (500)) ;

In the code example above, the byExecutionTime(Duration) method is used
for creating the termination object. Another method, byExecutionTime(Du-
ration, Clock), lets you define the java.time.Clock, which is used for mea-
sure the execution time. Jenetics uses the nano precision clock org.jenetics.-
util.NanoClock for measuring the time. To have the possibility to define a
different Clock implementation is especially useful for testing purposes.

Figure 6.6: Execution time termination

Diagram 6.6 shows the evaluated generations depending on the execution
time. Except for very small execution times, the evaluated generations per time
unit stays quite stable.28 That means that a doubling of the execution time will

28While running the tests, all other CPU intensive process has been stopped. The measuring
started after a warm-up phase.

54

6.6 Evolution performance 6 ADVANCED TOPICS

double the number of evolved generations.

6.5.4 Fitness threshold

A termination method that stops the evolution when the best fitness in the
current population becomes less than the user-specified fitness threshold and
the objective is set to minimize the fitness. This termination method also stops
the evolution when the best fitness in the current population becomes greater
than the user-specified fitness threshold when the objective is to maximize the
fitness.

Figure 6.7: Fitness threshold termination

Diagram 6.7 shows executed generations depending on the minimal fitness
value. The total generations grows exponentially with the desired fitness value.
This means, that this termination strategy will (practically) not terminate, if
the value for the fitness threshold is chosen to high. And it will definitely not
terminate if the fitness threshold is higher than the global maximum of the
fitness function. It will be a perfect strategy if you can define some good enough
fitness value, which can be easily achieved.

6.6 Evolution performance
This section contains an empirical proof, that evolutionary selectors deliver sig-
nificantly better fitness results than a random search. The MonteCarloSelector
is used for creating the comparison (random search) fitness values.

Diagram 6.8 on the following page shows the evolution performance of the

55

7 INTERNALS

Figure 6.8: Selector-performance (Knapsack)

Selector29 used by the examples in section 6.5 on page 51. The lower blue
line shows the (mean) fitness values of the Knapsack problem when using the
MonteCarloSelector for selecting the survivors and offspring population. It
can be easily seen, that the performance of the real evolutionary Selectors is
much better than a random search.

7 Internals
This section contains internal implementation details which doesn’t fit in one
of the previous sections. They are not essential for using the library, but would
give the user a deeper insight in some design decisions, made when implement-
ing the library. It also introduces tools and classes which where developed
for testing purpose. This classes resides below the org.jenetics.internal
package. Though they are not part of the official API, they are packed into
the delivered jar and can be used accordingly. Be aware that all classes be-
low the org.jenetics.internal package can be changed and removed without
announcement.

7.1 PRNG testing
Jenetics uses the dieharder30 (command line) tool for testing the randomness
of the used PRNGs. dieharder is a random number generator (RNG) testing
suite. It is intended to test generators, not files of possibly random numbers.
Since dieharder needs a huge amount of random data, for testing the quality
of a RNG, it is usually advisable to pipe the random numbers to the dieharder
process:

29The termination tests are using a TournamentSelector, with tournament-size 5, for se-
lecting the survivors, and a RouletteWheelSelector for selecting the offspring.

30From Robert G. Brown: http://www.phy.duke.edu/~rgb/General/dieharder.php

56

http://www.phy.duke.edu/~rgb/General/dieharder.php

7.1 PRNG testing 7 INTERNALS

$ cat /dev/urandom | dieharder -g 200 -a

The example above demonstrates how to stream a raw binary stream of bits to
the stdin (raw) interface of dieharder. With the DieHarder class, which is
part of the org.jenetics.internal.util package, it is easily possible to test
PRNGs extending the java.util.Random class. The only requirement is, that
the PRNG must be default-constructible and part of the classpath.

$ java -cp org.jenetics-3.6.0.jar \
org.jenetics.internal.util.DieHarder \
<random-engine-name> -a

Calling the command above will create an instance of the given random engine
and stream the random data (bytes) to the raw interface of dieharder process.

1 #===#
2 # Testing: <random -engine -name > (2015 -07 -11 23:48) #
3 #===#
4 #===#
5 # Linux 3.19.0 -22 - generic (amd64) #
6 # java version "1.8.0 _45" #
7 # Java(TM) SE Runtime Environment (build 1.8.0_45 -b14) #
8 # Java HotSpot(TM) 64-Bit Server VM (build 25.45 -b02) #
9 #===#

10 #===#
11 # dieharder version 3.31.1 Copyright 2003 Robert G. Brown #
12 #===#
13 rng_name |rands/second| Seed |
14 stdin_input_raw| 1.36e+07 |1583496496|
15 #===#
16 test_name |ntup| tsamples |psamples| p-value |Assessment
17 #===#
18 diehard_birthdays| 0| 100| 100|0.63372078| PASSED
19 diehard_operm5| 0| 1000000| 100|0.42965082| PASSED
20 diehard_rank_32x32| 0| 40000| 100|0.95159380| PASSED
21 diehard_rank_6x8| 0| 100000| 100|0.70376799| PASSED
22 ...
23 Preparing to run test 209. ntuple = 0
24 dab_monobit2| 12| 65000000| 1|0.76563780| PASSED
25 #===#
26 # Summary: PASSED =112, WEAK=2, FAILED =0 #
27 # 235 ,031.492 MB of random data created with 41.394 MB/sec #
28 #===#
29 #===#
30 # Runtime: 1:34:37 #
31 #===#

In the listing above, a part of the created dieharder report is shown. For
testing the LCG64ShiftRandom class, which is part of the org.jenetics.util
package, the following command can be called:

$ java -cp org.jenetics-3.6.0.jar \
org.jenetics.internal.util.DieHarder \
org.jenetics.util.LCG64ShiftRandom -a

Table 7.1 on the following page shows the summary of the dieharder tests. The
full report is part of the source file of the LCG64ShiftRandom class.31

31https://github.com/jenetics/jenetics/blob/master/org.jenetics/src/main/java/
org/jenetics/util/LCG64ShiftRandom.java

57

https://github.com/jenetics/jenetics/blob/master/org.jenetics/src/main/java/org/jenetics/util/LCG64ShiftRandom.java
https://github.com/jenetics/jenetics/blob/master/org.jenetics/src/main/java/org/jenetics/util/LCG64ShiftRandom.java

7.2 Random seeding 7 INTERNALS

Passed tests Weak tests Failed tests
110 4 0

Table 7.1: LCG64ShiftRandom quality

7.2 Random seeding
The PRNGs32, used by the Jenetics library, needs to be initialized with a proper
seed value before they can be used. The usual way for doing this, is to take the
current time stamp.

1 public stat ic long seed () {
2 return System . nanoTime () ;
3 }

Before applying this method throughout the whole library, I decided to per-
form some statistical tests. For this purpose I treated the seed() method itself
as PRNG and analyzed the created long values with the DieHarder class. The
seed() method has been wrapped into the org.jenetics.internal.util.-
NanoTimeRandom class. Assuming that the dieharder tool is in the search
path, calling

$ java -cp org.jenetics-3.6.0.jar \
org.jenetics.internal.util.DieHarder \
org.jenetics.internal.util.NanoTimeRandom -a

will perform the statistical tests for the nano time random engine. The statistical
quality is rather bad: every single test failed. Table 7.2 shows the summary of
the dieharder report.33

Passed tests Weak tests Failed tests
0 0 114

Table 7.2: Nano time seeding quality

An alternative source of entropy, for generating seed values, would be the
/dev/random or /dev/urandom file. But this approach is not portable, which
was a prerequisite for the Jenetics library.

The next attempt tries to fetch the seeds from the JVM, via the Object.-
hashCode() method. Since the hash code of an Object is available for every
operating system and most likely »randomly« distributed.

1 public stat ic long seed () {
2 return ((long)new Object () . hashCode () << 32) |
3 new Object () . hashCode () ;
4 }

This seed method has been wrapped into the ObjectHashRandom class and tested
as well with

32See section 4.2 on page 24.
33The detailed test report can be found in the source of the NanoTime-

Random class. https://github.com/jenetics/jenetics/blob/master/org.jenetics/src/
main/java/org/jenetics/internal/util/NanoTimeRandom.java

58

https://github.com/jenetics/jenetics/blob/master/org.jenetics/src/main/java/org/jenetics/internal/util/NanoTimeRandom.java
https://github.com/jenetics/jenetics/blob/master/org.jenetics/src/main/java/org/jenetics/internal/util/NanoTimeRandom.java

7.2 Random seeding 7 INTERNALS

$ java -cp org.jenetics-3.6.0.jar \
org.jenetics.internal.util.DieHarder \
org.jenetics.internal.util.ObjectHashRandom -a

Table 7.3 shows the summary of the dieharder report34, which looks better
than the nano time seeding, but 86 failing tests was still not very satisfying.

Passed tests Weak tests Failed tests
28 0 86

Table 7.3: Object hash seeding quality

After additional experimentation, a combination of the nano time seed and
the object hash seeding seems to be the right solution. The rational behind this
was, that the PRNG seed shouldn’t rely on a single source of entropy.

1 public stat ic long seed () {
2 return mix (System . nanoType () , objectHashSeed ()) ;
3 }
4

5 private stat ic long mix (f i n a l long a , f i n a l long b) {
6 long c = a^b ;
7 c ^= c << 17 ;
8 c ^= c >>> 31 ;
9 c ^= c << 8 ;

10 return c ;
11 }
12

13 private stat ic long objectHashSeed () {
14 return ((long)new Object () . hashCode () << 32) |
15 new Object () . hashCode () ;
16 }

Listing 29: Random seeding

The code in listing 29 shows how the nano time seed is mixed with the object
seed. The mix method was inspired by the mixing step of the lcg64_shift35

random engine, which has been reimplemented in the LCG64ShiftRandom class.
Running the tests with

$ java -cp org.jenetics-3.6.0.jar \
org.jenetics.internal.util.DieHarder \
org.jenetics.internal.util.SeedRandom -a

leads to the statistics summary36, which is shown in table 7.4 on the next page.
The statistical performance of this seeding is better, according to the die-

harder test suite, than some of the real random engines, including the default
Java Random engine. Using the proposed seed()method is in any case preferable
to the simple System.nanoTime() call.

34Full report: https://github.com/jenetics/jenetics/blob/master/org.jenetics/src/
main/java/org/jenetics/internal/util/ObjectHashRandom.java

35This class is part of the TRNG library: https://github.com/rabauke/trng4/blob/
master/src/lcg64_shift.hpp

36Full report: https://github.com/jenetics/jenetics/blob/master/org.jenetics/src/
main/java/org/jenetics/internal/util/SeedRandom.java

59

https://github.com/jenetics/jenetics/blob/master/org.jenetics/src/main/java/org/jenetics/internal/util/ObjectHashRandom.java
https://github.com/jenetics/jenetics/blob/master/org.jenetics/src/main/java/org/jenetics/internal/util/ObjectHashRandom.java
http://numbercrunch.de/trng/
https://github.com/rabauke/trng4/blob/master/src/lcg64_shift.hpp
https://github.com/rabauke/trng4/blob/master/src/lcg64_shift.hpp
https://github.com/jenetics/jenetics/blob/master/org.jenetics/src/main/java/org/jenetics/internal/util/SeedRandom.java
https://github.com/jenetics/jenetics/blob/master/org.jenetics/src/main/java/org/jenetics/internal/util/SeedRandom.java

8 INCUBATION

Passed tests Weak tests Failed tests
112 2 0

Table 7.4: Combined random seeding quality

Open questions

• How does this method perform on operating systems other than Linux?

• How does this method perform on other JVM implementations?

8 Incubation
This section describes the classes in the not yet released modules. Incubating
features and experimental genetic operators will be implemented in this mod-
ules. If you find this classes useful, you must build the module yourself, since
they are not yet available in the global maven repository. With

$./gradlew <module> :jar

it is possible to create a module JAR which can be added to your project class-
path. Be aware that interface and/or implementation of incubating modules
can be changed without noticing.

Currently incubation modules:

org.jenetics.tool Contains utility classes for measuring the evolution per-
formance.37 This classes where used for creating the diagrams in this
manual.

org.jenetix Contains non-standard selector and mutator classes.38 The classes
needed for the Weasel program (see section 8.1) are part of this module.

8.1 Weasel program
The Weasel program39 is thought experiment from Richard Dawkins, in which
he tries to illustrate the function of genetic mutation and selection.40 For this
reason he chooses the well known example of typewriting monkeys.

I don’t know who it was first pointed out that, given enough time, a
monkey bashing away at random on a typewriter could produce all
the works of Shakespeare. The operative phrase is, of course, given
enough time. Let us limit the task facing our monkey somewhat.
Suppose that he has to produce, not the complete works of Shake-
speare but just the short sentence »Methinks it is like a weasel«,
and we shall make it relatively easy by giving him a typewriter with
a restricted keyboard, one with just the 26 (uppercase) letters, and
a space bar. How long will he take to write this one little sentence?
[6]

37http://jenetics.io/javadoc/org.jenetics.tool/3.6/index.html
38http://jenetics.io/javadoc/org.jenetix/3.6/index.html
39https://en.wikipedia.org/wiki/Weasel_program
40The classes are located in the org.jenetix module.

60

http://jenetics.io/javadoc/org.jenetics.tool/3.6/index.html
http://jenetics.io/javadoc/org.jenetix/3.6/index.html
https://en.wikipedia.org/wiki/Weasel_program

8.1 Weasel program 8 INCUBATION

The search space of the 28 character long target string is 2728 ≈ 1040. If the
monkey writes 1, 000, 000 different sentences per second, it would take about
1026 years (in average) writing the correct one. Although Dawkins did not
provide the source code for his program, a »Weasel« style algorithm could run
as follows:

1. Start with a random string of 28 characters.

2. Make n copies of the string (reproduce).

3. Mutate the characters with an mutation probability of 5%.

4. Compare each new string with the target string »METHINKS IT IS LIKE
A WEASEL«, and give each a score (the number of letters in the string
that are correct and in the correct position).

5. If any of the new strings has a perfect score (28), halt. Otherwise, take
the highest scoring string, and go to step 2.

Richard Dawkins was also very careful to point out the limitations of this sim-
ulation:

Although the monkey/Shakespeare model is useful for explaining the
distinction between single-step selection and cumulative selection, it
is misleading in important ways. One of these is that, in each gen-
eration of selective »breeding«, the mutant »progeny« phrases were
judged according to the criterion of resemblance to a distant ideal
target, the phrase METHINKS IT IS LIKE A WEASEL. Life isn’t
like that. Evolution has no long-term goal. There is no long-distance
target, no final perfection to serve as a criterion for selection, al-
though human vanity cherishes the absurd notion that our species
is the final goal of evolution. In real life, the criterion for selec-
tion is always short-term, either simple survival or, more generally,
reproductive success. [6]

If you want to write a Weasel program with the Jenetics library, you need to
use the special WeaselSelector and WeaselMutator.

1 public class WeaselProgram {
2 private stat ic f i n a l St r ing TARGET =
3 "METHINKS IT IS LIKE A WEASEL" ;
4

5 private stat ic int s c o r e (f i n a l Genotype<CharacterGene> gt) {
6 f i n a l CharSequence source =
7 (CharSequence) gt . getChromosome () ;
8 return IntStream . range (0 , TARGET. l ength ())
9 .map(i −> source . charAt (i) == TARGET. charAt (i) ? 1 : 0)

10 . sum() ;
11 }
12

13 public stat ic void main (f i n a l St r ing [] a rgs) {
14 f i n a l CharSeq chars = CharSeq . o f ("A−Z ") ;
15 f i n a l Factory<Genotype<CharacterGene>> g t f = Genotype . o f (
16 new CharacterChromosome (chars , TARGET. l ength ())
17) ;
18 f i n a l Engine<CharacterGene , Integer> engine = Engine
19 . bu i l d e r (WeaselProgram : : score , g t f)

61

8.1 Weasel program 8 INCUBATION

20 . popu la t i onS i z e (150)
21 . s e l e c t o r (new Wease lSe lector <>())
22 . o f f s p r i n gF r a c t i o n (1)
23 . a l t e r e r s (new WeaselMutator <>(0.05))
24 . bu i ld () ;
25 f i n a l Phenotype<CharacterGene , Integer> r e s u l t = engine
26 . stream ()
27 . l im i t (byFitnessThresho ld (TARGET. l ength () − 1))
28 . peek (r −> System . out . p r i n t l n (
29 r . getTota lGenerat ions () + " : " +
30 r . getBestPhenotype ()))
31 . c o l l e c t (toBestPhenotype ()) ;
32 System . out . p r i n t l n (r e s u l t) ;
33 }
34 }

Listing 30: Weasel program

Listing 30 on the previous page shows how-to implement the WeaselProgram
with Jenetics. Step (1) and (2) of the algorithm is done implicitly when the
initial population is created. The third step is done by the WeaselMutator, with
mutation probability of 0.05. Step (4) is done by the WeaselSelector together
with the configured offspring-fraction of one. The evolution stream is limited by
the limit.byFitnessThreshold, which is set to scoremax − 1. In the current
example this value is set to TARGET.length() - 1 = 27.

1 1: [UBNHLJUS RCOXR LFIYLAWRDCCNY] --> 6
2 2: [UBNHLJUS RCOXR LFIYLAWWDCCNY] --> 7
3 3: [UBQHLJUS RCOXR LFIYLAWWECCNY] --> 8
4 5: [UBQHLJUS RCOXR LFICLAWWECCNL] --> 9
5 6: [W QHLJUS RCOXR LFICLA WEGCNL] --> 10
6 7: [W QHLJKS RCOXR LFIHLA WEGCNL] --> 11
7 8: [W QHLJKS RCOXR LFIHLA WEGSNL] --> 12
8 9: [W QHLJKS RCOXR LFIS A WEGSNL] --> 13
9 10: [M QHLJKS RCOXR LFIS A WEGSNL] --> 14

10 11: [MEQHLJKS RCOXR LFIS A WEGSNL] --> 15
11 12: [MEQHIJKS ICOXR LFIN A WEGSNL] --> 17
12 14: [MEQHINKS ICOXR LFIN A WEGSNL] --> 18
13 16: [METHINKS ICOXR LFIN A WEGSNL] --> 19
14 18: [METHINKS IMOXR LFKN A WEGSNL] --> 20
15 19: [METHINKS IMOXR LIKN A WEGSNL] --> 21
16 20: [METHINKS IMOIR LIKN A WEGSNL] --> 22
17 23: [METHINKS IMOIR LIKN A WEGSEL] --> 23
18 26: [METHINKS IMOIS LIKN A WEGSEL] --> 24
19 27: [METHINKS IM IS LIKN A WEHSEL] --> 25
20 32: [METHINKS IT IS LIKN A WEHSEL] --> 26
21 42: [METHINKS IT IS LIKN A WEASEL] --> 27
22 46: [METHINKS IT IS LIKE A WEASEL] --> 28

The (shortened) output of the Weasel program (listing 30 on the preceding
page) shows, that the optimal solution is reached in generation 46.

62

9 EXAMPLES

Appendix
9 Examples
This section contains some coding examples which should give you a feeling of
how to use the Jenetics library. The given examples are complete, in the sense
that they will compile and run and produce the given example output.

Running the examples delivered with the Jenetics library can be started
with the run-examples.sh script.

$./run-examples.sh

Since the script uses JARs located in the build directory you have to build it
with the jar Gradle target first; see section 10 on page 75.

9.1 Ones counting
Ones counting is one of the simplest model-problem. It uses a binary chro-
mosome and forms a classic genetic algorithm41. The fitness of a Genotype is
proportional to the number of ones.

1 import stat ic org . j e n e t i c s . eng ine . Evo lut ionResu l t . toBestPhenotype ;
2 import stat ic org . j e n e t i c s . eng ine . l im i t . bySteadyFitness ;
3

4 import org . j e n e t i c s . BitChromosome ;
5 import org . j e n e t i c s . BitGene ;
6 import org . j e n e t i c s . Genotype ;
7 import org . j e n e t i c s . Mutator ;
8 import org . j e n e t i c s . Phenotype ;
9 import org . j e n e t i c s . Roulet teWhee lSe lector ;

10 import org . j e n e t i c s . S ing l ePo intCros sove r ;
11 import org . j e n e t i c s . eng ine . Engine ;
12 import org . j e n e t i c s . eng ine . Ev o l u t i o nS t a t i s t i c s ;
13

14 public class OnesCounting {
15

16 // This method c a l c u l a t e s the f i t n e s s f o r a g iven genotype .
17 private stat ic I n t eg e r count (f i n a l Genotype<BitGene> gt) {
18 return ((BitChromosome) gt . getChromosome ()) . bitCount () ;
19 }
20

21 public stat ic void main (St r ing [] a rgs) {
22 // Conf igure and bu i ld the evo lu t i on eng ine .
23 f i n a l Engine<BitGene , Integer> engine = Engine
24 . bu i l d e r (
25 OnesCounting : : count ,
26 BitChromosome . o f (20 , 0 . 15))
27 . popu la t i onS i z e (500)
28 . s e l e c t o r (new RouletteWhee lSe lector <>())
29 . a l t e r e r s (
30 new Mutator <>(0.55) ,
31 new Sing lePo intCrossover <>(0.06))
32 . bu i ld () ;
33

34 // Create evo lu t i on s t a t i s t i c s consumer .

41In the classic genetic algorithm the problem is a maximization problem and the fitness
function is positive. The domain of the fitness function is a bit-chromosome.

63

9.1 Ones counting 9 EXAMPLES

35 f i n a l Evo l u t i o nS t a t i s t i c s <Integer , ?>
36 s t a t i s t i c s = Evo l u t i o nS t a t i s t i c s . ofNumber () ;
37

38 f i n a l Phenotype<BitGene , Integer> best = engine . stream ()
39 // Truncate the evo lu t i on stream a f t e r 7 " steady "
40 // gene ra t i on s .
41 . l im i t (bySteadyFitness (7))
42 // The evo lu t i on w i l l s top a f t e r maximal 100
43 // gene ra t i on s .
44 . l im i t (100)
45 // Update the eva lua t i on s t a t i s t i c s a f t e r
46 // each gene ra t i on
47 . peek (s t a t i s t i c s)
48 // Co l l e c t (reduce) the evo lu t i on stream to
49 // i t s bes t phenotype .
50 . c o l l e c t (toBestPhenotype ()) ;
51

52 System . out . p r i n t l n (s t a t i s t i c s) ;
53 System . out . p r i n t l n (bes t) ;
54 }
55 }

The genotype in this example consists of one BitChromosome with a ones
probability of 0.15. The altering of the offspring population is performed by mu-
tation, with mutation probability of 0.55, and then by a single-point crossover,
with crossover probability of 0.06. After creating the initial population, with the
ga.setup() call, 100 generations are evolved. The tournament selector is used
for both, the offspring- and the survivor selection—this is the default selector.42

1 +---+
2 | Time statistics |
3 +---+
4 | Selection: sum =0.016580144000 s; mean =0.001381678667 s |
5 | Altering: sum =0.096904159000 s; mean =0.008075346583 s |
6 | Fitness calculation: sum =0.022894318000 s; mean =0.001907859833 s |
7 | Overall execution: sum =0.136575323000 s; mean =0.011381276917 s |
8 +---+
9 | Evolution statistics |

10 +---+
11 | Generations: 12 |
12 | Altered: sum =40 ,487; mean =3373.916666667 |
13 | Killed: sum=0; mean =0.000000000 |
14 | Invalids: sum=0; mean =0.000000000 |
15 +---+
16 | Population statistics |
17 +---+
18 | Age: max=9; mean =0.808667; var =1.446299 |
19 | Fitness: |
20 | min = 1.000000000000 |
21 | max = 18.000000000000 |
22 | mean = 10.050833333333 |
23 | var = 7.839555898205 |
24 | std = 2.799920694985 |
25 +---+
26 [00001101|11110111|11111111] --> 18

The given example will print the overall timing statistics onto the console. In
the Evolution statistics section you can see that it actually takes 15 generations
to fulfill the termination criteria—finding no better result after 7 consecutive
generations.

42For the other default values (population size, maximal age, ...) have a look at the Javadoc:
http://jenetics.io/javadoc/org.jenetics/3.6/index.html

64

http://jenetics.io/javadoc/org.jenetics/3.6/index.html

9.2 Real function 9 EXAMPLES

9.2 Real function
In this example we try to find the minimum value of the function

f(x) = cos
(

1
2 + sin (x)

)
· cos (x) . (9.1)

Figure 9.1: Real function

The graph of function 9.1, in the range of [0, 2π], is shown in figure 9.1
and the listing beneath shows the GA implementation which will minimize the
function.

1 import stat ic java . lang .Math . PI ;
2 import stat ic java . lang .Math . cos ;
3 import stat ic java . lang .Math . s i n ;
4 import stat ic org . j e n e t i c s . eng ine . Evo lut ionResu l t . toBestPhenotype ;
5 import stat ic org . j e n e t i c s . eng ine . l im i t . bySteadyFitness ;
6

7 import org . j e n e t i c s . DoubleGene ;
8 import org . j e n e t i c s . MeanAlterer ;
9 import org . j e n e t i c s . Mutator ;

10 import org . j e n e t i c s . Optimize ;
11 import org . j e n e t i c s . Phenotype ;
12 import org . j e n e t i c s . eng ine . Engine ;
13 import org . j e n e t i c s . eng ine . Ev o l u t i o nS t a t i s t i c s ;
14 import org . j e n e t i c s . eng ine . codecs ;
15 import org . j e n e t i c s . u t i l . DoubleRange ;
16

17 public class RealFunction {
18

19 // The f i t n e s s func t i on .
20 private stat ic double f i t n e s s (f i n a l double x) {
21 return cos (0 . 5 + s i n (x)) ∗ cos (x) ;
22 }
23

24 public stat ic void main (f i n a l St r ing [] a rgs) {
25 f i n a l Engine<DoubleGene , Double> engine = Engine
26 // Create a new bu i l d e r with the g iven f i t n e s s
27 // func t i on and chromosome .
28 . bu i l d e r (

65

9.2 Real function 9 EXAMPLES

29 RealFunction : : f i t n e s s ,
30 codecs . o f S c a l a r (DoubleRange . o f (0 . 0 , 2 .0∗PI)))
31 . popu la t i onS i z e (500)
32 . opt imize (Optimize .MINIMUM)
33 . a l t e r e r s (
34 new Mutator <>(0.03) ,
35 new MeanAlterer <>(0.6))
36 // Build an evo lu t i on eng ine with the
37 // de f ined parameters .
38 . bu i ld () ;
39

40 // Create evo lu t i on s t a t i s t i c s consumer .
41 f i n a l Evo l u t i o nS t a t i s t i c s <Double , ?>
42 s t a t i s t i c s = Evo l u t i o nS t a t i s t i c s . ofNumber () ;
43

44 f i n a l Phenotype<DoubleGene , Double> best = engine . stream ()
45 // Truncate the evo lu t i on stream a f t e r 7 " steady "
46 // gene ra t i on s .
47 . l im i t (bySteadyFitness (7))
48 // The evo lu t i on w i l l s top a f t e r maximal 100
49 // gene ra t i on s .
50 . l im i t (100)
51 // Update the eva lua t i on s t a t i s t i c s a f t e r
52 // each gene ra t i on
53 . peek (s t a t i s t i c s)
54 // Co l l e c t (reduce) the evo lu t i on stream to
55 // i t s bes t phenotype .
56 . c o l l e c t (toBestPhenotype ()) ;
57

58 System . out . p r i n t l n (s t a t i s t i c s) ;
59 System . out . p r i n t l n (bes t) ;
60 }
61 }

The GA works with 1 × 1 DoubleChromosomes whose values are restricted
to the range [0, 2π].

1 +---+
2 | Time statistics |
3 +---+
4 | Selection: sum =0.064406456000 s; mean =0.003066974095 s |
5 | Altering: sum =0.070158382000 s; mean =0.003340875333 s |
6 | Fitness calculation: sum =0.050452647000 s; mean =0.002402507000 s |
7 | Overall execution: sum =0.169835154000 s; mean =0.008087388286 s |
8 +---+
9 | Evolution statistics |

10 +---+
11 | Generations: 21 |
12 | Altered: sum =3 ,897; mean =185.571428571 |
13 | Killed: sum=0; mean =0.000000000 |
14 | Invalids: sum=0; mean =0.000000000 |
15 +---+
16 | Population statistics |
17 +---+
18 | Age: max=9; mean =1.104381; var =1.962625 |
19 | Fitness: |
20 | min = -0.938171897696 |
21 | max = 0.936310125279 |
22 | mean = -0.897856583665 |
23 | var = 0.027246274838 |
24 | std = 0.165064456617 |
25 +---+
26 [[[3.389125782657314]]] --> -0.9381718976956661

The GA will generated an console output like above. The exact result of the
function–for the given range–will be 3.389, 125, 782, 8907, 939... You can also see,
that we reached the final result after 19 generations.

66

9.3 Rastrigin function 9 EXAMPLES

9.3 Rastrigin function
The Rastrigin function43 is often used to test the optimization performance of
genetic algorithm.

f (x) = An+
n∑

i=1

(
x2

i −A cos (2πxi)
)
. (9.2)

As the plot in figure 9.2 shows, the Rastrigin function has many local minima,
which makes it difficult for standard, gradient-based methods to find the global
minimum. If A = 10 and xi ∈ [−5.12, 5.12], the function has only one global
minimum at x = 0 with f (x) = 0.

Figure 9.2: Rastrigin function

The following listing shows the Engine setup for solving the Rastrigin func-
tion, which is very similar to the setup for the real-function in section 9.2 on
page 65. Beside the different fitness function, the Codec for double vectors is
used, instead of the double scalar Codec.

1 import stat ic java . lang .Math . PI ;
2 import stat ic java . lang .Math . cos ;
3 import stat ic org . j e n e t i c s . eng ine . Evo lut ionResu l t . toBestPhenotype ;
4 import stat ic org . j e n e t i c s . eng ine . l im i t . bySteadyFitness ;
5

6 import org . j e n e t i c s . DoubleGene ;
7 import org . j e n e t i c s . MeanAlterer ;
8 import org . j e n e t i c s . Mutator ;
9 import org . j e n e t i c s . Optimize ;

10 import org . j e n e t i c s . Phenotype ;
11 import org . j e n e t i c s . eng ine . Engine ;

43https://en.wikipedia.org/wiki/Rastrigin_function

67

https://en.wikipedia.org/wiki/Rastrigin_function

9.3 Rastrigin function 9 EXAMPLES

12 import org . j e n e t i c s . eng ine . Ev o l u t i o nS t a t i s t i c s ;
13 import org . j e n e t i c s . eng ine . codecs ;
14 import org . j e n e t i c s . u t i l . DoubleRange ;
15

16 public class Rastr ig inFunct ion {
17 private stat ic f i n a l double A = 10 ;
18 private stat ic f i n a l double R = 5 . 1 2 ;
19 private stat ic f i n a l int N = 2 ;
20

21 private stat ic double f i t n e s s (f i n a l double [] x) {
22 double value = A∗N;
23 for (int i = 0 ; i < N; ++i) {
24 value += x [i]∗ x [i] − A∗ cos (2 . 0∗PI∗x [i]) ;
25 }
26

27 return value ;
28 }
29

30 public stat ic void main (f i n a l St r ing [] a rgs) {
31 f i n a l Engine<DoubleGene , Double> engine = Engine
32 . bu i l d e r (
33 Rastr ig inFunct ion : : f i t n e s s ,
34 // Codec f o r ’ x ’ vec to r .
35 codecs . o fVector (DoubleRange . o f (−R, R) , N))
36 . popu la t i onS i z e (500)
37 . opt imize (Optimize .MINIMUM)
38 . a l t e r e r s (
39 new Mutator <>(0.03) ,
40 new MeanAlterer <>(0.6))
41 . bu i ld () ;
42

43 f i n a l Evo l u t i o nS t a t i s t i c s <Double , ?>
44 s t a t i s t i c s = Evo l u t i o nS t a t i s t i c s . ofNumber () ;
45

46 f i n a l Phenotype<DoubleGene , Double> best = engine . stream ()
47 . l im i t (bySteadyFitness (7))
48 . peek (s t a t i s t i c s)
49 . c o l l e c t (toBestPhenotype ()) ;
50

51 System . out . p r i n t l n (s t a t i s t i c s) ;
52 System . out . p r i n t l n (bes t) ;
53 }
54 }

The console output of the program shows, that Jenetics finds the optimal
solution after 38 generations.

1 +---+
2 | Time statistics |
3 +---+
4 | Selection: sum =0.209185134000 s; mean =0.005504871947 s |
5 | Altering: sum =0.295102044000 s; mean =0.007765843263 s |
6 | Fitness calculation: sum =0.176879937000 s; mean =0.004654735184 s |
7 | Overall execution: sum =0.664517256000 s; mean =0.017487296211 s |
8 +---+
9 | Evolution statistics |

10 +---+
11 | Generations: 38 |
12 | Altered: sum =7 ,549; mean =198.657894737 |
13 | Killed: sum=0; mean =0.000000000 |
14 | Invalids: sum=0; mean =0.000000000 |
15 +---+
16 | Population statistics |
17 +---+
18 | Age: max=8; mean =1.100211; var =1.814053 |
19 | Fitness: |

68

9.4 0/1 Knapsack 9 EXAMPLES

20 | min = 0.000000000000 |
21 | max = 63.672604047475 |
22 | mean = 3.484157452128 |
23 | var = 71.047475139018 |
24 | std = 8.428966433616 |
25 +---+
26 [[[-1.3226168588424143E -9] ,[-1.096964971404292E -9]]] --> 0.0

9.4 0/1 Knapsack
In the knapsack problem44 a set of items, together with it’s size and value, is
given. The task is to select a disjoint subset so that the total size does not
exceed the knapsack size. For solving the 0/1 knapsack problem we define a
BitChromosome, one bit for each item. If the ith bit is set to one the ith item is
selected.

1 import stat ic org . j e n e t i c s . eng ine . Evo lut ionResu l t . toBestPhenotype ;
2 import stat ic org . j e n e t i c s . eng ine . l im i t . bySteadyFitness ;
3

4 import java . u t i l .Random ;
5 import java . u t i l . f unc t i on . Function ;
6 import java . u t i l . stream . Co l l e c t o r ;
7 import java . u t i l . stream . Stream ;
8

9 import org . j e n e t i c s . BitGene ;
10 import org . j e n e t i c s . Mutator ;
11 import org . j e n e t i c s . Phenotype ;
12 import org . j e n e t i c s . Roulet teWhee lSe lector ;
13 import org . j e n e t i c s . S ing l ePo intCros sove r ;
14 import org . j e n e t i c s . TournamentSelector ;
15 import org . j e n e t i c s . eng ine . Engine ;
16 import org . j e n e t i c s . eng ine . Ev o l u t i o nS t a t i s t i c s ;
17 import org . j e n e t i c s . eng ine . codecs ;
18 import org . j e n e t i c s . u t i l . ISeq ;
19 import org . j e n e t i c s . u t i l . RandomRegistry ;
20

21 // The main c l a s s .
22 public class Knapsack {
23

24 // This c l a s s r ep r e s en t s a knapsack item , with a s p e c i f i c
25 // " s i z e " and " value " .
26 f i n a l stat ic class Item {
27 public f i n a l double s i z e ;
28 public f i n a l double value ;
29

30 Item (f i n a l double s i z e , f i n a l double value) {
31 this . s i z e = s i z e ;
32 this . va lue = value ;
33 }
34

35 // Create a new random knapsack item .
36 stat ic Item random () {
37 f i n a l Random r = RandomRegistry . getRandom () ;
38 return new Item (
39 r . nextDouble () ∗100 ,
40 r . nextDouble () ∗100
41) ;
42 }
43

44 // Co l l e c t o r f o r summing up the knapsack items .

44https://en.wikipedia.org/wiki/Knapsack_problem

69

https://en.wikipedia.org/wiki/Knapsack_problem

9.4 0/1 Knapsack 9 EXAMPLES

45 stat ic Col l e c to r<Item , ? , Item> toSum () {
46 return Co l l e c t o r . o f (
47 () −> new double [2] ,
48 (a , b) −> {a [0] += b . s i z e ; a [1] += b . value ; } ,
49 (a , b) −> {a [0] += b [0] ; a [1] += b [1] ; return a ; } ,
50 r −> new Item (r [0] , r [1])
51) ;
52 }
53 }
54

55 // Creat ing the f i t n e s s func t i on .
56 stat ic Function<ISeq<Item>, Double>
57 f i t n e s s (f i n a l double s i z e) {
58 return i tems −> {
59 f i n a l Item sum = items . stream () . c o l l e c t (Item . toSum ()) ;
60 return sum . s i z e <= s i z e ? sum . value : 0 ;
61 } ;
62 }
63

64 public stat ic void main (f i n a l St r ing [] a rgs) {
65 f i n a l int nitems = 15 ;
66 f i n a l double k s s i z e = nitems ∗100 . 0 / 3 . 0 ;
67

68 f i n a l ISeq<Item> items =
69 Stream . generate (Item : : random)
70 . l im i t (nitems)
71 . c o l l e c t (ISeq . toISeq ()) ;
72

73 // Conf igure and bu i ld the evo lu t i on eng ine .
74 f i n a l Engine<BitGene , Double> engine = Engine
75 . bu i l d e r (f i t n e s s (k s s i z e) , codecs . ofSubSet (items))
76 . popu la t i onS i z e (500)
77 . s u r v i v o r s S e l e c t o r (new TournamentSelector <>(5))
78 . o f f s p r i n g S e l e c t o r (new RouletteWhee lSe lector <>())
79 . a l t e r e r s (
80 new Mutator <>(0.115) ,
81 new Sing lePo intCrossover <>(0.16))
82 . bu i ld () ;
83

84 // Create evo lu t i on s t a t i s t i c s consumer .
85 f i n a l Evo l u t i o nS t a t i s t i c s <Double , ?>
86 s t a t i s t i c s = Evo l u t i o nS t a t i s t i c s . ofNumber () ;
87

88 f i n a l Phenotype<BitGene , Double> best = engine . stream ()
89 // Truncate the evo lu t i on stream a f t e r 7 " steady "
90 // gene ra t i on s .
91 . l im i t (bySteadyFitness (7))
92 // The evo lu t i on w i l l s top a f t e r maximal 100
93 // gene ra t i on s .
94 . l im i t (100)
95 // Update the eva lua t i on s t a t i s t i c s a f t e r
96 // each gene ra t i on
97 . peek (s t a t i s t i c s)
98 // Co l l e c t (reduce) the evo lu t i on stream to
99 // i t s bes t phenotype .

100 . c o l l e c t (toBestPhenotype ()) ;
101

102 System . out . p r i n t l n (s t a t i s t i c s) ;
103 System . out . p r i n t l n (bes t) ;
104 }
105 }

The console out put for the Knapsack GA will look like the listing beneath.

70

9.5 Traveling salesman 9 EXAMPLES

1 +---+
2 | Time statistics |
3 +---+
4 | Selection: sum =0.044465978000 s; mean =0.005558247250 s |
5 | Altering: sum =0.067385211000 s; mean =0.008423151375 s |
6 | Fitness calculation: sum =0.037208189000 s; mean =0.004651023625 s |
7 | Overall execution: sum =0.126468539000 s; mean =0.015808567375 s |
8 +---+
9 | Evolution statistics |

10 +---+
11 | Generations: 8 |
12 | Altered: sum =4 ,842; mean =605.250000000 |
13 | Killed: sum=0; mean =0.000000000 |
14 | Invalids: sum=0; mean =0.000000000 |
15 +---+
16 | Population statistics |
17 +---+
18 | Age: max=7; mean =1.387500; var =2.780039 |
19 | Fitness: |
20 | min = 0.000000000000 |
21 | max = 542.363235999342 |
22 | mean = 436.098248628661 |
23 | var = 11431.801291812390 |
24 | std = 106.919601999878 |
25 +---+
26 [01111011|10111101] --> 542.3632359993417

9.5 Traveling salesman
The Traveling Salesman problem45 is one of the classical problems in compu-
tational mathematics and it is the most notorious NP-complete problem. The
goal is to find the shortest distance, or the path, with the least costs, between
N different cities. Testing all possible path for N cities would lead to N ! checks
to find the shortest one.

The following example uses a path where the cities are lying on a circle.
That means, the optimal path will be a polygon. This makes it easier to check
the quality of the found solution.

1 import stat ic java . lang .Math . PI ;
2 import stat ic java . lang .Math . abs ;
3 import stat ic java . lang .Math . s i n ;
4 import stat ic org . j e n e t i c s . eng ine . Evo lut ionResu l t . toBestPhenotype ;
5 import stat ic org . j e n e t i c s . eng ine . l im i t . bySteadyFitness ;
6

7 import java . u t i l . stream . IntStream ;
8

9 import org . j e n e t i c s . EnumGene ;
10 import org . j e n e t i c s . Genotype ;
11 import org . j e n e t i c s . Optimize ;
12 import org . j e n e t i c s . Part ia l lyMatchedCrossover ;
13 import org . j e n e t i c s . PermutationChromosome ;
14 import org . j e n e t i c s . Phenotype ;
15 import org . j e n e t i c s . SwapMutator ;
16 import org . j e n e t i c s . eng ine . Engine ;
17 import org . j e n e t i c s . eng ine . Ev o l u t i o nS t a t i s t i c s ;
18

19 public class Travel ingSalesman {
20

21 // Problem i n i t i a l i z a t i o n :
22 // Ca l cu l a t ing the adjacence matrix o f the " c i t y " d i s t an c e s .
23 private stat ic f i n a l int STOPS = 20 ;
24 private stat ic f i n a l double [] [] ADJACENCE = matrix (STOPS) ;

45https://en.wikipedia.org/wiki/Travelling_salesman_problem

71

https://en.wikipedia.org/wiki/Travelling_salesman_problem

9.5 Traveling salesman 9 EXAMPLES

25

26 private stat ic double [] [] matrix (int s tops) {
27 f i n a l double rad iu s = 10 . 0 ;
28 double [] [] matrix = new double [s tops] [s tops] ;
29

30 for (int i = 0 ; i < stops ; ++i) {
31 for (int j = 0 ; j < stops ; ++j) {
32 matrix [i] [j] = chord (stops , abs (i − j) , r ad iu s) ;
33 }
34 }
35 return matrix ;
36 }
37

38 private stat ic double chord (int stops , int i , double r) {
39 return 2 .0∗ r ∗abs (s i n ((PI∗ i) / s tops)) ;
40 }
41

42 // Ca lcu la te the path l ength o f the cur rent genotype .
43 private stat ic
44 Double d i s t (f i n a l Genotype<EnumGene<Integer>> gt) {
45 // Convert the genotype to the t r a v e l i n g path .
46 f i n a l int [] path = gt . getChromosome () . toSeq () . stream ()
47 . mapToInt (EnumGene<Integer >: : g e tA l l e l e)
48 . toArray () ;
49

50 // Ca lcu la te the path d i s t anc e .
51 return IntStream . range (0 , STOPS)
52 . mapToDouble (i −>
53 ADJACENCE[path [i]] [path [(i + 1)%STOPS]])
54 . sum() ;
55 }
56

57 public stat ic void main (St r ing [] a rgs) {
58 f i n a l Engine<EnumGene<Integer >, Double> engine = Engine
59 . bu i l d e r (
60 Travel ingSalesman : : d i s t ,
61 PermutationChromosome . o f I n t e g e r (STOPS))
62 . opt imize (Optimize .MINIMUM)
63 . maximalPhenotypeAge (11)
64 . popu la t i onS i z e (500)
65 . a l t e r e r s (
66 new SwapMutator<>(0.2) ,
67 new Part ia l lyMatchedCrossover <>(0.35))
68 . bu i ld () ;
69

70 // Create evo lu t i on s t a t i s t i c s consumer .
71 f i n a l Evo l u t i o nS t a t i s t i c s <Double , ?>
72 s t a t i s t i c s = Evo l u t i o nS t a t i s t i c s . ofNumber () ;
73

74 f i n a l Phenotype<EnumGene<Integer >, Double> best =
75 eng ine . stream ()
76 // Truncate the evo lu t i on stream a f t e r 15 " steady "
77 // gene ra t i on s .
78 . l im i t (bySteadyFitness (15))
79 // The evo lu t i on w i l l s top a f t e r maximal 250
80 // gene ra t i on s .
81 . l im i t (250)
82 // Update the eva lua t i on s t a t i s t i c s a f t e r
83 // each gene ra t i on
84 . peek (s t a t i s t i c s)
85 // Co l l e c t (reduce) the evo lu t i on stream to
86 // i t s bes t phenotype .

72

9.6 Evolving images 9 EXAMPLES

87 . c o l l e c t (toBestPhenotype ()) ;
88

89 System . out . p r i n t l n (s t a t i s t i c s) ;
90 System . out . p r i n t l n (bes t) ;
91 }
92 }

The Traveling Salesman problem is a very good example which shows you
how to solve combinatorial problems with an GA. Jenetics contains several
classes which will work very well with this kind of problems. Wrapping the base
type into an EnumGene is the first thing to do. In our example, every city has
an unique number, that means we are wrapping an Integer into an EnumGene.
Creating a genotype for integer values is very easy with the factory method
of the PermutationChromosome. For other data types you have to use one of
the constructors of the permutation chromosome. As alterers, we are using a
swap-mutator and a partially-matched crossover. These alterers guarantees that
no invalid solutions are created—every city exists exactly once in the altered
chromosomes.

1 +---+
2 | Time statistics |
3 +---+
4 | Selection: sum =0.134312100000 s; mean =0.001618218072 s |
5 | Altering: sum =0.272923323000 s; mean =0.003288232807 s |
6 | Fitness calculation: sum =0.171154575000 s; mean =0.002062103313 s |
7 | Overall execution: sum =0.571970865000 s; mean =0.006891215241 s |
8 +---+
9 | Evolution statistics |

10 +---+
11 | Generations: 83 |
12 | Altered: sum =117 ,315; mean =1413.433734940 |
13 | Killed: sum =55; mean =0.662650602 |
14 | Invalids: sum=0; mean =0.000000000 |
15 +---+
16 | Population statistics |
17 +---+
18 | Age: max =11; mean =1.608048; var =4.913384 |
19 | Fitness: |
20 | min = 95.823941038289 |
21 | max = 352.556531948213 |
22 | mean = 162.422468571595 |
23 | var = 3846.044938421069 |
24 | std = 62.016489246176 |
25 +---+
26 [12|11|10|1|2|3|4|5|6|7|8|9|0|19|18|17|16|15|14|13] --> 95.82394103828862

The listing above shows the output generated by our example. The last
line represents the phenotype of the best solution found by the GA, which
represents the traveling path. As you can see, the GA has found the shortest
path, in reverse order.

9.6 Evolving images
The following example tries to approximate a given image by semitransparent
polygons.46 It comes with an Swing UI, where you can immediately start your
own experiments. After compiling the sources with

$./gradlew jar

you can start the example by calling
46Original idea by Roger Johansson http://rogeralsing.com/2008/12/07/

genetic-programming-evolution-of-mona-lisa.

73

http://rogeralsing.com/2008/12/07/genetic-programming-evolution-of-mona-lisa
http://rogeralsing.com/2008/12/07/genetic-programming-evolution-of-mona-lisa

9.6 Evolving images 9 EXAMPLES

$./jrun org.jenetics.example.image.EvolvingImages

Figure 9.3: Evolving images UI

Image 9.3 show the GUI after evolving the default image for about 4,000
generations. With the »Open« button it is possible to load other images for
polygonization. The »Save« button allows to store polygonized images in PNG
format to disk. At the button of the UI, you can change some of the GA
parameters of the example:

Population size The number of individual of the population.

Tournament size The example uses a TournamentSelector for selecting the
offspring population. This parameter lets you set the number of individual
used for the tournament step.

Mutation rate The probability that a polygon component (color or vertex
position) is altered.

Mutation magnitude In case a polygon component is going to be mutated,
its value will be randomly modified in the uniform range of [−m,+m].

Polygon length The number of edges (or vertices) of the created polygons.

Polygon count The number of polygons of one individual (Genotype).

Reference image size To improve the processing speed, the fitness of a given
polygon set (individual) is not calculated with the full sized image. Instead

74

10 BUILD

an scaled reference image with the given size is used. A smaller reference
image will speed up the calculation, but will also reduce the accuracy.

It is also possible to run and configure the Evolving Images example from the
command line. This allows to do long running evolution experiments and save
polygon images every n generations—specified with the --image-generation
parameter.

$./jrun org.jenetics.example.image.EvolvingImages evolve \
--engine-properties engine.properties \
--input-image monalisa.png \
--output-dir evolving-images \
--generations 10000 \
--image-generation 100

Every command line argument has proper default values, so that it is possible
to start it without parameters. Listing 31 shows the default values for the GA
engine if the --engine-properties parameter is not specified.

1 popu lat ion_s i ze=50
2 tournament_size=3
3 mutation_rate=0.025
4 mutation_multitude=0.15
5 polygon_length=4
6 polygon_count=250
7 reference_image_width=60
8 re ference_image_height=60

Listing 31: Default engine.properties

For a quick start, you can simply call

$./jrun org.jenetics.example.image.EvolvingImages evolve

The images in figure 9.4 on the following page shows the resulting polygon
images after the given number of generations. They where created with the
command line version of the program using the default engine.properties file
(listing 31):

$./jrun org.jenetics.example.image.EvolvingImages evolve \
--generations 1000000 \
--image-generation 100

10 Build
For building the Jenetics library from source, download the most recent, stable
package version from https://sourceforge.net/projects/jenetics/files/
latest/download or https://github.com/jenetics/jenetics/releases and
extract it to some build directory.

$ unzip jenetics-<version>.zip -d <builddir>

75

https://sourceforge.net/projects/jenetics/files/latest/download
https://sourceforge.net/projects/jenetics/files/latest/download
https://github.com/jenetics/jenetics/releases

10 BUILD

a) 100 generations b) 102 generations c) 103 generations

d) 104 generations e) 105 generations f) 106 generations

Figure 9.4: Evolving Mona Lisa images

<version> denotes the actual Jenetics version and <builddir> the actual
build directory. Alternatively you can check out the latest version from the
Git master branch.

$ git clone https://github.com/jenetics/jenetics.git \
<builddir>

Jenetics uses Gradle47 as build system and organizes the source into sub-projects
(modules).48 Each sub-project is located in it’s own sub-directory:

• org.jenetics: This project contains the source code and tests for the
Jenetics core-module.

• org.jenetics.example: This project contains example code for the ore-
module.

• org.jenetics.doc: Contains the code of the web-site and this manual.

For building the library change into the <builddir> directory (or one of the
module directory) and call one of the available tasks:

• compileJava: Compiles the Jenetics sources and copies the class files to
the <builddir>/<module-dir>/build/classes/main directory.

• jar: Compiles the sources and creates the JAR files. The artifacts are
copied to the <builddir>/<module-dir>/build/libs directory.

47http://gradle.org/downloads
48If you are calling the gradlew script (instead of gradle), which are part of the downloaded

package, the proper Gradle version is automatically downloaded and you don’t have to install
Gradle explicitly.

76

http://gradle.org/downloads

10 BUILD

• test: Compiles and executes the unit tests. The test results are printed
onto the console and a test-report, created by TestNG, is written to
<builddir>/<module-dir> directory.

• javadoc: Generates the API documentation. The Javadoc is stored in
the <builddir>/<module-dir>/build/docs directory

• clean: Deletes the <builddir>/build/* directories and removes all gen-
erated artifacts.

For building the library from the source, call

$ cd <build-dir>
$ gradle jar

or

$./gradlew jar

if you don’t have the the Gradle build system installed—calling the the Gradle
wrapper script will download all needed files and trigger the build task after-
wards.

IDE integration Gradle has tasks which creates the project file for Eclipse49

and IntelliJ IDEA50. Call

$./gradlew <eclipse|idea>

for creating the project files for Eclipse or IntelliJ, respectively.

External library dependencies The following external projects are used
for running and/or building the Jenetics library.

• TestNG

– Version: 6.9.13
– Homepage: http: // testng. org/ doc/ index. html

– License: Apache License, Version 2.0
– Scope: test

• Apache Commons Math

– Version: 3.6.1
– Homepage: http: // commons. apache. org/ proper/ commons-math/

– Download: http: // tweedo. com/ mirror/ apache/ commons/ math/
binaries/ commons-math3-3. 6. 1-bin. zip

– License: Apache License, Version 2.0
– Scope: test

49http://www.eclipse.org/
50http://www.jetbrains.com/idea/

77

http://testng.org/doc/index.html
http://testng.org/license
http://commons.apache.org/proper/commons-math/
http://tweedo.com/mirror/apache/commons/math/binaries/commons-math3-3.6.1-bin.zip
http://tweedo.com/mirror/apache/commons/math/binaries/commons-math3-3.6.1-bin.zip
http://testng.org/license
http://www.eclipse.org/
http://www.jetbrains.com/idea/

11 LICENSE

• Java2Html

– Version: 5.0
– Homepage: http: // www. java2html. de/

– Download: http: // www. java2html. de/ java2html_ 50. zip

– License: GPL or CPL1.0
– Scope: javadoc

• Gradle

– Version: 3.1
– Homepage: http: // gradle. org/

– Download: http: // services. gradle. org/ distributions/ gradle-3.
1-bin. zip

– License: Apache License, Version 2.0
– Scope: build

Maven Central The whole Jenetics package can also be downloaded from
the Maven Central repository http://repo.maven.apache.org/maven2:

pom.xml snippet for Maven

<dependency>
<groupId>org.bitbucket.fwilhelm</groupId>
<artifactId>org.jenetics</artifactId>
<version>3.6.0</version>

</dependency>

Gradle

’org.bitbucket.fwilhelm:org.jenetics:3.6.0’

11 License
The library itself is licensed under the Apache License, Version 2.0.

Copyright 2007-2016 Franz Wilhelmstötter

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

78

http://www.java2html.de/
http://www.java2html.de/java2html_50.zip
https://www.gnu.org/licenses/gpl.html
http://www.eclipse.org/legal/cpl-v10.html
http://gradle.org/
http://services.gradle.org/distributions/gradle-3.1-bin.zip
http://services.gradle.org/distributions/gradle-3.1-bin.zip
http://gradle.org/license
http://repo.maven.apache.org/maven2
http://www.apache.org/licenses/LICENSE-2.0.html

REFERENCES REFERENCES

References
[1] Thomas Back. Evolutionary Algorithms in Theory and Practice. Oxford

Univiversity Press, 1996.

[2] James E. Baker. Reducing bias and inefficiency in the selection algorithm.
Proceedings of the Second International Conference on Genetic Algorithms
and their Application, pages 14–21, 1987.

[3] Shumeet Baluja and Rich Caruana. Removing the genetics from the stan-
dard genetic algorithm. pages 38–46. Morgan Kaufmann Publishers, 1995.

[4] Heiko Bauke. Tina’s random number generator library.
http://numbercrunch.de/trng/trng.pdf, 2011.

[5] Tobias Blickle and Lothar Thiele. A comparison of selection schemes used
in evolutionary algorithms. Evolutionary Computation, 4:361–394, 1997.

[6] Richard Dawkins. The Blind Watchmaker. New York: W. W. Norton &
Company, 1986.

[7] Sean Luke. Essentials of Metaheuristics. Lulu, second edition, 2013. Avail-
able for free at http://cs.gmu.edu/∼sean/book/metaheuristics/.

[8] Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution.
Springer, 1996.

[9] Albert Nijenhuis and Herbert Wilf. Combinatorial Algorithms for Comput-
ers and Calculators. Academic Press, second edition, 1978.

[10] Oracle. Value-based classes. https://docs.oracle.com/javase/8/docs/api/-
java/lang/doc-files/ValueBased.html, 2014.

[11] Daniel Shiffman. The Nature of Code. The Nature of Code, 1 edition, 12
2012.

[12] S. N. Sivanandam and S. N. Deepa. Introduction to Genetic Algorithms.
Springer, 2010.

[13] Eric W. Weisstein. Scalar function. http://mathworld.wolfram.com/-
ScalarFunction.html, 2015.

[14] Eric W. Weisstein. Vector function. http://mathworld.wolfram.com/-
VectorFunction.html, 2015.

[15] Darrell Whitley. A genetic algorithm tutorial. Statistics and Computing,
4:65–85, 1994.

[16] Mark Wolters. A genetic algorithm for selection of fixed-size subsets with
application to design problems. Journal of Statistical Software, 68(1):1–18,
2015.

79

Index
0/1 Knapsack, 69
2-point crossover, 15
3-point crossover, 16

Allele, 5, 31
Alterer, 12, 35
AnyChromosome, 33
AnyGene, 32
Apache Commons Math, 77

Base classes, 4
Block splitting, 26
Boltzmann selector, 11
Build, 75

Gradle, 76
gradlew, 76

Chromosome, 6, 33
recombination, 14
scalar, 38

Codec, 43
Permutation, 47
Scalar, 44
Subset, 45
Vector, 45

Compile, 76
Concurrency, 23
Crossover

2-point crossover, 15
3-point crossover, 16
Multiple-point crossover, 14
Partially-matched crossover, 15, 16
Single-point crossover, 14, 15

Directed graph, 42
Domain classes, 5
Domain model, 5
Download, 75

Elitism, 35
Encoding, 37

Affine transformation, 39
Directed graph, 42
Graph, 41
Real function, 37
Scalar function, 38
Undirected graph, 41
Vector function, 39

Weighted graph, 42
Engine, 17, 36
Engine classes, 15
Evolution

Engine, 17
performance, 55
Stream, 3, 15, 19

Evolution time, 54
EvolutionResult, 21
EvolutionStatistics, 22
EvolutionStream, 19
Evolving images, 73, 74
Examples, 63

0/1 Knapsack, 69
Evolving images, 73, 74
Ones counting, 63
Rastrigin function, 67
Real function, 65
Traveling salesman, 71

Exponential-rank selector, 11

Fitness function, 16
Fitness scaler, 17
Fitness threshold, 55
Fixed generation, 51

Gaussian mutator, 13
Gene, 5, 31

validation, 6
Genetic algorithm, 3
Genotype, 6, 7

scalar, 38
Validation, 19

Git repository, 76
Gradle, 76, 78
gradlew, 76
Graph, 41

Hello World, 1

Installation, 75
Internals, 56

Java2Html, 78
JAXB, 29

LCG64ShiftRandom, 26, 57
Leapfrog, 26

80

INDEX INDEX

License, i, 78
Linear-rank selector, 11

Monte Carlo selector, 10, 55
Multiple-point crossover, 14
Mutation, 12
Mutator, 13

Ones counting, 63
Operation classes, 8

Package structure, 4
Partially-matched crossover, 15, 16
Permutation codec, 47
Phenotype, 7

Validation, 19
Population, 8
PRNG, 24

Block splitting, 26
LCG64ShiftRandom, 26
Leapfrog, 26
Parameterization, 25
Performance, 27
Random seeding, 25

PRNG testing, 56
Probability selector, 10
Problem, 49

Random, 24
Engine, 24
LCG64ShiftRandom, 26
Registry, 24
seeding, 58
testing, 56

Random seeding, 25
Randomness, 24
Rastrigin function, 67
Real function, 65
Recombination, 13
Roulette-wheel selector, 10

Scalar chromosome, 38
Scalar codec, 44
Scalar genotype, 38
Seeding, 58
Selector, 8, 34

Elitist, 35
Seq, 30
Serialization, 27

JAXB, 29
Single-point crossover, 14, 15

Source code, 76
Statistics, 30, 35
Steady fitness, 52
Stochastic-universal selector, 11
Subset codec, 45
Swap mutator, 13

Termination, 51
Evolution time, 54
Fitness threshold, 55
Fixed generation, 51
Steady fitness, 52

TestNG, 77
Tournament selector, 9
Traveling salesman, 71
Truncation selector, 9

Undirected graph, 41

Validation, 6, 19, 50
Vector codec, 45

Weasel program, 60
WeaselMutator, 61
WeaselSelector, 61
Weighted graph, 42

81

	Introduction
	Architecture
	Base classes
	Domain classes
	Gene
	Chromosome
	Genotype
	Phenotype
	Population

	Operation classes
	Selector
	Alterer

	Engine classes
	Fitness function
	Fitness scaler
	Engine
	EvolutionStream
	EvolutionResult
	EvolutionStatistics

	Nuts and bolts
	Concurrency
	Randomness
	Serialization
	Utility classes

	Extending Jenetics
	Genes
	Chromosomes
	Selectors
	Alterers
	Statistics
	Engine

	Advanced topics
	Encoding
	Real function
	Scalar function
	Vector function
	Affine transformation
	Graph

	Codec
	Scalar codec
	Vector codec
	Subset codec
	Permutation codec
	Composite codec

	Problem
	Validation
	Termination
	Fixed generation
	Steady fitness
	Evolution time
	Fitness threshold

	Evolution performance

	Internals
	PRNG testing
	Random seeding

	Incubation
	Weasel program

	Examples
	Ones counting
	Real function
	Rastrigin function
	0/1 Knapsack
	Traveling salesman
	Evolving images

	Build
	License
	References

